Skip to main content

Advertisement

Log in

The effects of thymoquinone on memory impairment and inflammation in rats with hepatic encephalopathy induced by thioacetamide

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy (HE) is a prevalent complication of the central nervous system (CNS) that is caused by acute or chronic liver failure. This study was designed to evaluate the effects of thymoquinone (TQ) on thioacetamide (TAA)-induced HE in rats, and determine the consequential behavioral, biochemical, and histological changes. HE was induced in male Wistar rats by intraperitoneal (i.p.) injection of 200 mg/kg TAA once every 48 h for 14 consecutive days. Control groups received the normal saline containing 5 % DMSO. Thymoquinone (5, 10, and 20 mg/kg) was administered for ten consecutive days intraperitoneally (i.p.) after HE induction and it was continued until the end of the tests. Then, the passive avoidance memory, extracellular single unit, BBB permeability, and brain water content were evaluated. Moreover, hippocampal tissues were used for evaluation of oxidative stress index, inflammatory biomarkers, and histological parameters following HE. As result of the treatment, TQ improved passive avoidance memory, increased the average number of simultaneous firing of spikes/bins, improved the integrity of BBB, and decreased brain water content in the animal model of HE. Furthermore, the results indicated that treatment with TQ decreased the levels of inflammatory cytokines (TNF-α and IL-1β) but increased the levels of glutathione (GSH) and anti-inflammatory cytokine (IL-10) of the surviving cells in the hippocampal tissues. This study demonstrates that TQ may have beneficial therapeutic effects on cognitive, oxidative stress, neuroinflammatory, and histological complications of HE in rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study could be accessed through the corresponding author upon reasonable request.

References

  • Abulfadl YS, El-Maraghy NN, Ahmed AAE, Nofal S, Badary OA (2018) Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changes. Neurol Res 40:324–333

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A et al (2013) A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 3:337–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Algandaby MM (2018) Antifibrotic effects of crocin on thioacetamide-induced liver fibrosis in mice. Saudi J Biol Sci 25:747–754

    Article  CAS  PubMed  Google Scholar 

  • Alhebshi A, Gotoh M, Suzuki I (2013) Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem Biophys Res Commun 433:362–367

    Article  CAS  PubMed  Google Scholar 

  • Al-Majed AA, Al-Omar FA, Nagi MN (2006) Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus European. J Pharmacol 543:40–47

    CAS  Google Scholar 

  • Bai T, Yang Y, Wu Y-L, Jiang S, Lee JJ, Lian L-H, Nan J-X (2014) Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1–AMPK signaling pathway in mice. Int Immunopharmacol 19:351–357

    Article  CAS  PubMed  Google Scholar 

  • Bakiri Y, Hamilton NB, Káradóttir R, Attwell D (2008) Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 56:233–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M (2017) The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 96:173–184

    Article  CAS  PubMed  Google Scholar 

  • Beutler E (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Beutler E, Kelly BM (1963) The effect of sodium nitrite on red cell GSH. Experientia 19(2):96–97

  • Beyazcicek E, Ankarali S, Beyazcicek O, Ankarali H, Demir S, Ozmerdivenli R (2016) Effects of thymoquinone, the major constituent of Nigella sativa seeds, on penicillin-induced epileptiform activity in rats. Neurosciences 21:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Bratlid D, Winsnes A (1971) Determination of conjugated and unconjugated bilirubin by methods based on direct spectrophotometry and chloroform-extraction. Scand J Clin Lab Invest 28(1):41–48

  • Butterworth RF (2011) Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology 53:1372–1376

    Article  PubMed  Google Scholar 

  • Cauli O et al (2011) Brain region-selective mechanisms contribute to the progression of cerebral alterations in acute liver failure in rats. Gastroenterology 140:638–645

    Article  CAS  PubMed  Google Scholar 

  • Cauli O, Rodrigo R, Boix J, Piedrafita B, Agusti A, Felipo V (2008) Acute liver failure-induced death of rats is delayed or prevented by blocking NMDA receptors in brain. Am J Physiol Gastrointest Liver Physiol 295:G503–G511

    Article  CAS  PubMed  Google Scholar 

  • Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA (2009) Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone in pancreatic cancer cells. HPB 11:373–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y-C et al (2012) Alterations in NADPH oxidase expression and blood–brain barrier in bile duct ligation-treated young rats effects of melatonin. Neurochem Int 60:751–758

    Article  CAS  PubMed  Google Scholar 

  • Chen J-R, Wang B-N, Tseng G-F, Wang Y-J, Huang Y-S, Wang T-J (2014) Morphological changes of cortical pyramidal neurons in hepatic encephalopathy. BMC Neurosci 15:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coltart I, Tranah TH, Shawcross DL (2013) Inflammation and hepatic encephalopathy. Arch Biochem Biophys 536:189–196

    Article  CAS  PubMed  Google Scholar 

  • de Miranda AS et al (2017) A neuroprotective effect of the glutamate receptor antagonist MK801 on long-term cognitive and behavioral outcomes secondary to experimental cerebral malaria. Mol Neurobiol 54:7063–7082

    Article  PubMed  CAS  Google Scholar 

  • Dhanda S, Sandhir R (2018) Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins. Mol Neurobiol 55:3642–3659

    CAS  PubMed  Google Scholar 

  • Durand F, Nadim MK (2016) Management of acute-on-chronic liver failure. Thieme Medical Publishers, New York, pp 141–152

  • Ebrahimi SS, Oryan S, Izadpanah E, Hassanzadeh K (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 276:108–114

    Article  CAS  PubMed  Google Scholar 

  • El Khiat A et al (2019) Kinetic deterioration of short memory in rat with acute hepatic encephalopathy: involvement of astroglial and neuronal dysfunctions. Behav Brain Res 367:201–209

    Article  PubMed  Google Scholar 

  • El-Marasy SA, El-Shenawy SM, El-Khatib AS, El-Shabrawy OA, Kenawy SA (2012) Effect of Nigella sativa and wheat germ oils on scopolamine-induced memory impairment in rats . Bull Fac Pharm Cairo Univ 50:81–88

    Google Scholar 

  • Fanoudi S, Alavi MS, Hosseini M, Sadeghnia HR (2019) Nigella sativa and thymoquinone attenuate oxidative stress and cognitive impairment following cerebral hypoperfusion in rats. Metab Brain Dis 34:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851

    Article  CAS  PubMed  Google Scholar 

  • Gow AG (2017) Hepatic encephalopathy. Vet Clin North Am Small Anim Pract 47:585–599

    Article  PubMed  Google Scholar 

  • Haghparast A, Naderi N, Khani A, Lashgari R, Motamedi F (2010) Formalin-induced differential activation of nucleus cuneiformis neurons in the rat: an electrophysiological study. J Pain 11:32–43

    Article  CAS  PubMed  Google Scholar 

  • Hermenegildo C, Monfort P, Felipo V (2000) Activation of N-methyl‐D‐aspartate receptors in rat brain in vivo following acute ammonia intoxication: Characterization by in vivo brain microdialysis. Hepatology 31:709–715

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Rabaza V et al (2016) Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflamm 13:83

    Article  CAS  Google Scholar 

  • Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L, Malaguarnera M, Agustí A, Llansola M, Felipo V (2016) Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflamm 13:41

    Article  CAS  Google Scholar 

  • Hossen MJ, Yang WS, Kim D, Aravinthan A, Kim J-H, Cho JY (2017) Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Khaksari M, Mahmmodi R, Shahrokhi N, Shabani M, Joukar S, Aqapour M (2013) The effects of shilajit on brain edema, intracranial pressure and neurologic outcomes following the traumatic brain injury in rat. Iran J Basic Med Sci 16:858

    PubMed  PubMed Central  Google Scholar 

  • Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981:193–200

    Article  CAS  PubMed  Google Scholar 

  • Lashgari R, Motamedi F, Asl SZ, Shahidi S, Komaki A (2006) Behavioral and electrophysiological studies of chronic oral administration of L-type calcium channel blocker verapamil on learning and memory in rats. Behav Brain Res 171:324–328

    Article  CAS  PubMed  Google Scholar 

  • Lu L et al (2020) BabaoDan cures hepatic encephalopathy by decreasing ammonia levels and alleviating inflammation in rats. J Ethnopharmacol 249:112301

    Article  CAS  PubMed  Google Scholar 

  • Malaguarnera M, Pistone G, Trovato B, Scuderi M, Vinci M, Romano M, Marletta F (1996) Electrophysiological alterations in hepatic encephalopathy detected by brain mapping. Panminerva Med 38:84–88

    CAS  PubMed  Google Scholar 

  • Mohammadian F, Firouzjaei MA, Haghani M, Shabani M, Moosavi SMS, Mohammadi F (2019) Inhibition of inflammation is not enough for recovery of cognitive impairment in hepatic encephalopathy: Effects of minocycline and ibuprofen. Brain Res Bull 149:96–105

    Article  CAS  PubMed  Google Scholar 

  • Monfort P, Erceg S, Piedrafita B, Llansola M, Felipo V (2007) Chronic liver failure in rats impairs glutamatergic synaptic transmission and long-term potentiation in hippocampus and learning ability European. J Neurosci 25:2103–2111

    Google Scholar 

  • Montoliu C, Llansola M, Felipo V (2015) Neuroinflammation and neurological alterations in chronic liver diseases. Neuroimmunol Neuroinflammation 2:138–144

    Article  CAS  Google Scholar 

  • Mustafa HN, El Awdan SA, Hegazy GA (2013) Protective role of antioxidants on thioacetamide-induced acute hepatic encephalopathy: biochemical and ultrastructural study. Tissue Cell 45:350–362

    Article  CAS  PubMed  Google Scholar 

  • Obara-Michlewska M, Tuszyńska P, Albrecht J (2013) Ammonia upregulates kynurenine aminotransferase II mRNA expression in rat brain: a role for astrocytic NMDA receptors? Metab Brain Dis 28:161–165

    Article  CAS  PubMed  Google Scholar 

  • O’Connor CA, Cernak I, Vink R (2005) Both estrogen and progesterone attenuate edema formation following diffuse traumatic brain injury in rats. Brain Res 1062:171–174

    Article  PubMed  CAS  Google Scholar 

  • Oja SS, Saransaari P, Korpi ER (2017) Neurotoxicity of ammonia. Neurochem Res 42:713–720

    Article  CAS  PubMed  Google Scholar 

  • Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 47:13–18

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition

  • Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62

    Article  CAS  PubMed  Google Scholar 

  • Radad K, Hassanein K, Al-Shraim M, Moldzio R, Rausch W-D (2014) Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Exp Toxicol Pathol 66:13–17

    Article  CAS  PubMed  Google Scholar 

  • Rahmani AH, Almatroudi A, Babiker AY, Khan AA, Alsahli MA (2019) Thymoquinone, an active constituent of black seed attenuates CCl4 induced liver injury in mice via modulation of antioxidant enzymes, PTEN, P53 and VEGF protein Open access. Maced J Med Sci 7:311

    Article  Google Scholar 

  • Randolph C et al (2009) Neuropsychological assessment of hepatic encephalopathy: ISHEN practice guidelines. Liver Int 29:629–635

    Article  PubMed  Google Scholar 

  • Said AM, Waheed RM, Khalifa OA (2019) Protective role of rosemary ethanolic extract on thioacetamide induced hepatic encephalopathy: biochemical and molecular studies . Aust J Basic Appl Sci 13:1–6

    CAS  Google Scholar 

  • Salahshoor M, Haghjoo M, Roshankhah S, Makalani F, Jalili C (2018) Effect of thymoquinone on reproductive parameter in morphine-treated male mice. Adv Biomed Res 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawara K, Desjardins P, Chatauret N, Kato A, Suzuki K, Butterworth RF (2009) Alterations in expression of genes coding for proteins of the neurovascular unit in ischemic liver failure. Neurochem Int 55:119–123

    Article  CAS  PubMed  Google Scholar 

  • Sawasaki Y, Yamada N, Nakajima H (1976) Developmental features of cerebellar hypoplasia and brain bilirubin levels in a mutant (Gunn) rat with hereditary hyperbilirubinaemia 1. J Neurochem 27:577–583

    Article  CAS  PubMed  Google Scholar 

  • Saxena N, Bhatia M, Joshi YK, Garg PK, Dwivedi SN, Tandon RK (2002) Electrophysiological and neuropsychological tests for the diagnosis of subclinical hepatic encephalopathy and prediction of overt encephalopathy. Liver 22:190–197

    Article  PubMed  Google Scholar 

  • Sayeed MSB, Asaduzzaman M, Morshed H, Hossain MM, Kadir MF, Rahman MR (2013) The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers. J Ethnopharmacol 148:780–786

    Article  Google Scholar 

  • Schauwecker PE (2010) Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain. Exp Neurol 224:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedaghat R, Roghani M, Khalili M (2014) Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iran J Pharm Res 13:227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seyan AS, Hughes RD, Shawcross DL (2010) Changing face of hepatic encephalopathy: role of inflammation and oxidative stress. World J Gastroenterol 16:33–47

    Article  CAS  Google Scholar 

  • Shahrokhi N, Khaksari M, Soltani Z, Mahmoodi M, Nakhaee N (2010) Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can J Physiol Pharmacol 88:414–421

    Article  CAS  PubMed  Google Scholar 

  • Shawcross DL, Davies NA, Williams R, Jalan R (2004) Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 40:247–254

    Article  CAS  PubMed  Google Scholar 

  • Shooshtari MK, Sarkaki A, Mansouri SMT, Badavi M, Khorsandi L, Dehcheshmeh MG, Farbood Y (2019) Protective effects of Chrysin against memory impairment, cerebral hyperemia and oxidative stress after cerebral hypoperfusion and reperfusion in rats. Metab Brain Dis 35:401–412

  • Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H (2020) Role of oxidative stress, MAPKinase and apoptosis pathways in the protective effects of thymoquinone against acrylamide-induced central nervous system toxicity in rat. Neurochem Res 45:254–267

    Article  CAS  PubMed  Google Scholar 

  • Tahamtan M, Aghaei I, Pooladvand V, Sheibani V, Khaksari M, Shabani M (2017) Characterization of the CA1 pyramidal neurons in rat model of hepatic cirrhosis: insights into their electrophysiological properties. Metab Brain Dis 32:881–889

    Article  PubMed  Google Scholar 

  • Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H (2017) Review on clinical trials of black seed (Nigella sativa) and its active constituent thymoquinone. J Pharmacopuncture 20:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Umar S, Zargan J, Umar K, Ahmad S, Katiyar CK, Khan HA (2012) Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact 197:40–46

    Article  CAS  PubMed  Google Scholar 

  • Umar S, Hedaya O, Singh AK, Ahmed S (2015) Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation. Toxicol Appl Pharmcol 287:299–305

    Article  CAS  Google Scholar 

  • Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27:R713–R715

    Article  CAS  PubMed  Google Scholar 

  • Wang L-Q, Zhou H-J, Pan C-F, Zhu S-M, Xu L-M (2011) Expression of IL-1β, IL-6 and TNF-α in rats with thioacetamide-induced acute liver failure and encephalopathy: correlation with brain edema. Asian Biomed 5:205–215

    Article  CAS  Google Scholar 

  • Wang F, Lei X, Zhao Y, Yu Q, Li Q, Zhao H, Pei Z (2019) Protective role of thymoquinone in sepsis–induced liver injury in BALB/c mice. Exp Ther Med 18:1985–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wijdicks EF (2016) Hepatic encephalopathy New England. J Med 375:1660–1670

    CAS  Google Scholar 

Download references

Acknowledgements

This article was extracted from Miss Somayeh Hajipour’s Ph.D. thesis. This study was financially supported by the Research Affairs Deputy of Ahvaz Jundishapur University of Medical Sciences (grant No. APRC- 9617).

Funding

The authors did not receive any financial support from any organization for the submitted work. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

1. SH analyzed the electrophysiological data and contributed in writing the manuscript.

2. AS designed, guided, and supervised the project and monitored the electrophysiological records.

3. MD was responsible for confirming the TAA-induced HE, analyzed the liver enzyme changes, and revised the article.

4. MR was responsible for the biochemical factors analyses.

5. LKH performed and interpreted the histological examinations of the brains.

6. YF was responsible for monitoring and approving the behavioral tests in different experimental groups.

Corresponding author

Correspondence to Yaghoob Farbood.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants performed by any of the authors. The ethics governing the use and conduct of experiments on animals were strictly observed, and all the procedures used in this study were done according to the National Institute of Health (NIH) and were approved by the Local Ethics Committee of Ahvaz Jundishapur University of Medical Sciences (AJUMS) (Ethics code: IR.AJUMS.REC.1396.684).

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the contents of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajipour, S., Sarkaki, A., Dianat, M. et al. The effects of thymoquinone on memory impairment and inflammation in rats with hepatic encephalopathy induced by thioacetamide. Metab Brain Dis 36, 991–1002 (2021). https://doi.org/10.1007/s11011-021-00688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00688-6

Keywords

Navigation