Skip to main content

Advertisement

Log in

Role of iron in ischemia-induced neurodegeneration: mechanisms and insights

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Iron is an important micronutrient for neuronal function and survival. It plays an essential role in DNA and protein synthesis, neurotransmission and electron transport chain due to its dual redox states. On the contrary, iron also catalyses the production of free radicals and hence, causes oxidative stress. Therefore, maintenance of iron homeostasis is very crucial and it involves a number of proteins in iron metabolism and transport that maintain the balance. In ischemic conditions large amount of iron is released and this free iron catalyzes production of more free radicals and hence, causing more damage. In this review we have focused on the iron transport and maintenance of iron homeostasis at large and also the effect of imbalance in iron homeostasis on retinal and brain tissue under ischemic conditions. The understanding of the proteins involved in the homeostasis imbalance will help in developing therapeutic strategies for cerebral as well retinal ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Auriat AM, Silasi G, Wei Z, Paquette R, Paterson P, Nichol H, Colbourne F (2012) Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome. Exp Neurol 234(1):136–143

    CAS  PubMed  Google Scholar 

  • Bagenholm R, Nilsson UA, Gotborg CW, Kjellme I (1998) Free radicals are formed in the brain of fetal sheep during reperfusion after cerebral ischemia. Pediatr Res 43:271–275

    CAS  PubMed  Google Scholar 

  • Biemond P, Swaak AJ, van Eijk HG, Koster JF (1988) Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic Biol Med 4:185–198

    CAS  PubMed  Google Scholar 

  • Boddaert N, Le QS, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, Sidi D, Thalabard JC, Munnich A, Cabantchik ZI (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    CAS  PubMed  Google Scholar 

  • Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK et al (1989) Direct evidence that oxygen-derived free radicals contribute to post ischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci U S A 86:4695–4699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burtke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    Google Scholar 

  • Caliaperumal J, Wowk S, Jones S, Ma Y, Colbourne F (2013) 2,2 dipyridyl, An iron chelator, does not reduce intracerebral iron toxicity or improve outcome after intracerebral hemorrhagic stroke in rats. Stroke 44, ATP108

    Google Scholar 

  • Carbonell T, Rama R (2007) Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    CAS  PubMed  Google Scholar 

  • Castellanos M, Puig N, Carbonell Teresa T, Castillo J, Martinez JM, Rama R, Davalos A (2002) Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Res 952:1–6

    CAS  PubMed  Google Scholar 

  • Chao HM, Chen YH, Liu JH, Lee SM, Lee FL, Chang Y, Yeh PH, Pan WHT, Chi CW, Liu TY, Lui WY, Ho LT, Kuo CD, Lin DE, Chan CC, Yang DM, Lin AMY, Chao FP (2008) Iron-generated hydroxyl radicals kill retinal cells in vivo: effect of ferulic acid. Hum Exp Toxicol 27:327–339

    CAS  PubMed  Google Scholar 

  • Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chevion M, Jiang Y, Har-El R, Berenshtein E, Uretzky G, Kitrossky N (1993) Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc Natl Acad Sci U S A 90:1102–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conrad ME, Umbreit JN (2000) Iron absorption and transport: an update. Am J Hematol 64:287–298

    CAS  PubMed  Google Scholar 

  • Davalos A, Castillo J, Marrugat J, Fernandez-Real JM, Armengou A, Cacabelos P, Rama R (2000) Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology 54:1568–1574

    CAS  PubMed  Google Scholar 

  • de Silva DM, Askwith CC, Kaplan J (1996) Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev 76(1):31–47

    PubMed  Google Scholar 

  • Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17

    CAS  PubMed  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ et al (2000) Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron transporter. Nature 403:776–781

    CAS  PubMed  Google Scholar 

  • Downey JM (1990) Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol 52:487–504

    CAS  PubMed  Google Scholar 

  • Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662

    CAS  PubMed  Google Scholar 

  • Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans PH (1993) Free radicals in brain metabolism and pathology. Br Med Bull 49(3):577–587

    CAS  PubMed  Google Scholar 

  • Farinelli SE, Greene LA (1996) Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci 16:1150–1162

    CAS  PubMed  Google Scholar 

  • Farkas RH, Chowers I, Hackam AS, Kageyama M, Nickells RW, Otteson DC, Duh EJ, Wang C, Valenta DF, Gunatilaka TL, Pease ME, Quigley HA, Zack DJ (2004) Increased expression of iron-regulating genes in monkey and human glaucoma. Invest Ophthalmol Vis Sci 45:1410–1417

    PubMed  Google Scholar 

  • Fujii Y, Tanaka R, Takeuchi S, Koike T, Minakawa T, Sasaki O (1994) Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg 80:51–57

    CAS  PubMed  Google Scholar 

  • Gehlbach P, Purple RL (1994) Enhancement of retinal recovery by conjugated deferoxamine after ischemia-reperfusion. Invest Ophthalmol Vis Sci 35:669–676

    CAS  PubMed  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischemic tolerance. Nat Rev Neurosci 7:437–448

    CAS  PubMed  Google Scholar 

  • Gnana-Prakasam JP, Ananth S, Prasad PD, Zhang M, Atherton SS, Martin PM, Smith SB, Ganapathy V (2011) Expression and iron-dependent regulation of succinate receptor GPR91 in retinal pigment epithelium. Invest Ophthalmol Vis Sci 52:3751–3758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gong C, Hoff JT, Keep RF (2000) Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 871:57–65

    CAS  PubMed  Google Scholar 

  • Grisham MB (1993) Reactive metabolites of oxygen and nitrogen in biology and medicine. Landes, Texas

    Google Scholar 

  • Grisham MB, McCord JM (1986) Chemistry and cytotoxicity of reactive oxygen metabolites. In: Taylor AE, Matalon S, Ward PA (eds) Physiology of oxygen radicals. Am Physiol Soc, Bethesda, pp 1–18

    Google Scholar 

  • Gutteridge JM (1992) Iron and oxygen radicals in brain. Ann Neurol 32:S16–S21

    CAS  PubMed  Google Scholar 

  • Hadziahmetovic M, Dentchev T, Song Y, Haddad N, He X, Hahn P, Pratico D, Wen R, Harris JL, Lambris JD, Beard J, Dunaief JL (2008) Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD. Invest Opthalmol Vis Sci 49:2728–2736

    Google Scholar 

  • Hadziahmetovic M, Song Y, Wolkow N, Iacovelli J, Kautz L, Roth M (2011a) Bmp6 regulates retinal iron homeostasis and has altered expression in age-related macular degeneration. Am J Pathol 179:335–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hadziahmetovic M, Song Y, Wolkow N, Iacovelli J, Grieco S, Lee J, Lyubarsky A, Pratico D, Connelly J, Spino M, Harris ZL, Dunaief JL (2011b) The oral iron chelator deferiprone protects against iron overload-induced retinal degeneration. Invest Ophthalmol Vis Sci 52:959–968

    CAS  PubMed  Google Scholar 

  • Hahn P, Ying GS, Beard J, Dunaief JL (2006) Iron levels in human retina: sex difference and increase with age. Neuroreport 17:1803–1806

    CAS  PubMed  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7(27):153–163

    CAS  PubMed  Google Scholar 

  • Kaplan P, Racay P, Lehotsky J, Mezesova V (1995) Change in fluidity of brain endoplasmic reticulum membranes by oxygen free radicals: a protective effect of stobadine, α-tocopherol acetate, and butylated hydroxytoluene. Neurochem Res 20(7):815–820

    CAS  PubMed  Google Scholar 

  • Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L, Priller J, von Harsdorf R, Bruck W, Hortnagl H, Dirnagl U, Bhide PG, Endres M (2001) Mild cerebral ischemia induces loss of cyclindependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 21:5045–5053

    CAS  PubMed  Google Scholar 

  • Kaur J, Arora S, Singh B, Thakur LC, Gambhir J, Prabhu KM (2011) Role of oxidative stress in pathophysiology of transient ischemic attack and stroke. Int J Biol Med Res 2(3):611–615

    Google Scholar 

  • Ke Y, Ming QZ (2003) Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2:246–253

    CAS  PubMed  Google Scholar 

  • Klausner RD, Rouault TA, Harford JB (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28

    CAS  PubMed  Google Scholar 

  • Klomp LW, Gitlin JD (1996) Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum Mol Genet 5:1989–1996

    CAS  PubMed  Google Scholar 

  • Korthuis RJ, Granger DN (1986) Ischemia-reperfusion injury: role of oxygen derived free radicals. In: Taylor AE, Matalon S, Ward PA (eds) Physiology of oxygen radicals. Am Physiol Soc, Bethesda, pp 217–250

    Google Scholar 

  • Kramer JH, Arroyo CM, Dickens BF, Weglicki WB (1987) Spin-trapping evidence that graded myocardial ischemia alters post-ischemic superoxide production. Free Radic Biol Med 3:153–159

    CAS  PubMed  Google Scholar 

  • Lipscomb DC, Gorman LG, Traystman RJ, Hurn P (1998) Low molecular weight iron in cerebral ischemic acidosis in vivo. Stroke 29:487–493

    CAS  PubMed  Google Scholar 

  • Loh A, Hadziahmetovic M, Dunaief JL (2009) Iron homeostasis and eye disease. Biochim Biophys Acta 1790:637–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukinova N, Iacovelli J, Dentchev T, Wolkow N, Hunter A, Amado D, Ying GS, Sparrow JR, Dunaief JL (2009) Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli. Invest Ophthalmol Vis Sci 50:1440–1447

    PubMed Central  PubMed  Google Scholar 

  • Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 23:8576–8585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin WR, Ye FQ, Allen PS (1998) Increasing striatal iron content associated with normal aging. Mov Disord 13(2):281–286

    CAS  PubMed  Google Scholar 

  • Martin PM, Gnana Prakasam JP, Roon P, Smith RG, Smith SB, Ganapathy V (2006) Expression and polarized localization of the hemochromatosis gene product HFE in retinal pigment epithelium. Invest Ophthalmol Vis Sci 47:4238–4244

    PubMed  Google Scholar 

  • Martins EAL, Robalino RL, Meneghini R (1995) Oxidative stress induces activation of a cytosolic protein responsible for control of iron uptake. Arch Biochem Biophys 316:128–134

    CAS  PubMed  Google Scholar 

  • McCord JM (1985) Oxygen-derived free radicals in post-ischemic tissue injury. N Engl J Med 312:159–163

    CAS  PubMed  Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K et al (2000) A novel duodenal specific iron-regulated transporter, IREG1, implicated in basolateral transfer of iron to the circulation. Mol Cells 5:299–309

    CAS  Google Scholar 

  • MeGowan AJ, Fernandes RS, Samali A, Cotter TG (1996) Antioxidants and apoptosis. Biochem Soc Trans 24:229–267

    Google Scholar 

  • Mehta PJ, Chapman S, Jayam-Trouth A, Kurukumbi M (2012) Acute ischemic stroke secondary to iron deficiency anemia: a case report. Case Rep Neurol Med 2012:487080

    PubMed Central  PubMed  Google Scholar 

  • Michon JJ, Li ZL, Shioura N, Anderson RJ, Tso MO (1999) A comparative study of methods of photoreceptor morphometry. Invest Ophthalmol Vis Sci 32:280–284

    Google Scholar 

  • Millan M, Sobrino T, Castellanos M, Nombela F, Arenillas JF, Riva E, Cristobo I, Garcia MM, Vivancos J, Serena J, Moro MA, Castillo J, Davalos A (2007) Increased body iron stores are associated with poor outcome after thrombolytic treatment in acute stroke. Stroke 38:90–95

    PubMed  Google Scholar 

  • Millerot-Serrurot E, Bertrand N, Mossiat C, Faure P, Prigent-Tessier A, Garnier P, Bejot Y, Giroud M, Beley A, Marie C (2008) Temporal changes in free iron levels after brain ischemia: relevance to the timing of iron chelation therapy in stroke. Neurochem Int 52:1442–1448

    CAS  PubMed  Google Scholar 

  • Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem J 342:481–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muckenthaler M, Gray NK, Hentze MW (1998) IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4f. Mol Cells 2:383–388

    CAS  Google Scholar 

  • Osaki S, Johnson DA, Frieden E (1966) The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 241:2746–2751

    CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    CAS  PubMed  Google Scholar 

  • Pantopoulos K, Hentze MW (1995) Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J 14:2917–2924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pantopoulos K, Hentze MW (1998) Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc Natl Acad Sci U S A 95:10559–10563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pantopoulos K, Mueller S, Atzberger A, Ansorge W, Stremmel W et al (1997) Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem 272:9802–9808

    CAS  PubMed  Google Scholar 

  • Patel BN, David S (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem 272:20185–20190

    CAS  PubMed  Google Scholar 

  • Patel BN, Dunn RJ, David S (2000) Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem 275:4305–4310

    CAS  PubMed  Google Scholar 

  • Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S (2002) Ceruloplasmin regulates iron levels in the cns and prevents free radical injury. J Neurosci 22(15):6578–6586

    CAS  PubMed  Google Scholar 

  • Patt A, Horesh IR, Berger EM, Harken AH, Repine JE (1990) Iron depletion or chelation reduces ischaemia/reperfusion-induced edema in gerbil brains. J Pediatr Surg 25:224–228

    CAS  PubMed  Google Scholar 

  • Pietrangelo A (2010) Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139:393–408

    PubMed  Google Scholar 

  • Rao R, de Ungria M, Sullivan D, Wu P, Wobken JD, Nelson CA, Georgieff MK (1999) Perinatal brain iron deficiency increases the vulnerability of rat hippocampus to hypoxic ischemic insult. J Nutr 129:199–206

    CAS  PubMed  Google Scholar 

  • Reif DW (1992) Ferritin as a source of iron for oxidative damage. Free Radic Biol Med 12:417–427

    CAS  PubMed  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520

    CAS  PubMed  Google Scholar 

  • Rodríguez Diez G, Uranga RM, Mateos MV, Giusto NM, Salvador GA (2012) Differential participation of phospholipase A2 isoforms during iron-induced retinal toxicity. Implications for age-related macular degeneration. Neurochem Int 61:749–758

    PubMed  Google Scholar 

  • Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 13:142–148

    PubMed  Google Scholar 

  • Ryu B, Kim EY, Gwag BJ (1998) Oxidative stress is not required for neuronal apoptosis in cortical cell cultures, presented at 28th Annual Meeting of Society for Neuroscience, LA

  • Saeed SA, Shad KF, Saleem T, Javed F, Khan MU (2007) Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res 182:1–10

    PubMed  Google Scholar 

  • Selim MH, Ratan RR (2004) The role of iron neurotoxicity in ischemic stroke. Ageing Res Rev 3:345–353

    CAS  PubMed  Google Scholar 

  • Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, Schlaug G, Torbey M, Waldman B, Xi G, Palesch Y (2011) Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke 42:3067–3074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    CAS  PubMed  Google Scholar 

  • Shah SV, Rajapurkar MM (2009) The role of labile iron in kidney disease and treatment with chelation. Hemoglobin 33:378–385

    CAS  PubMed  Google Scholar 

  • Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91

    CAS  PubMed  Google Scholar 

  • Song D, Dunaief JF (2013) Retinal iron homeostasis in health and disease. Front Aging Neurosci 5:1–13

    Google Scholar 

  • Song J, Yoon YH (1998) Iron induced cytotoxicity in cultured rat retinal neurons. Korean J Ophthalmol 12:77–84

    Google Scholar 

  • Song D, Song Y, Hadziahmetovic M, Zhong Y, Dunaief JL (2012) Systemic administration of the iron chelator deferiprone protects against light induced photo receptor degeneration in the mouse retina. Free Radic Biol Med 53:64–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607

    CAS  PubMed  Google Scholar 

  • Tantawy AG, Andrawes NG, Adly AM, El-Kady BA, Shalash AS (2013) Retinal changes in children and adolescents with sickle cell disease attending a paediatric hospital in Cairo, Egypt: risk factors and relation to ophthalmic and cerebral blood flow. Trans R Soc Trop Med Hyg 107:205–211

    CAS  PubMed  Google Scholar 

  • Thaler S, Fiedorowicz M, Rejdak R, Choragiewicz TJ, Sulejczak D, Stopa P, Zarnowski T, Zrenner E, Grieb P, Schuettauf F (2010) Neuroprotective effects of tempol on retinal ganglion cells in a partial optic nerve crush rat model with and without iron load. Exp Eye Res 90:254–260

    CAS  PubMed  Google Scholar 

  • Voloboueva LA, Killilea DW, Atamna H, Ames BN (2007) N-tert-butyl hydroxylamine, a mitochondrial antioxidant, protects human retinal pigment epithelial cells from iron overload: relevance to macular degeneration. FASEB J 21:4077–4086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82:3610–3615

    CAS  PubMed  Google Scholar 

  • Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35(1):67–86

    CAS  PubMed  Google Scholar 

  • Wong RW, Richa DC, Hahn P, Green WR, Dunaief JL (2007) Iron toxicity as a potential factor in AMD. Retina 27:997–1003

    PubMed  Google Scholar 

  • Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    PubMed  Google Scholar 

  • Yefimova MG, Jeanny JC, Guillonneau X, Keller N, Nguyen-Legros J, Sergeant C, Guillou F, Courtois Y (2000) Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci 41:2343–2351

    CAS  PubMed  Google Scholar 

  • Yefimova MG, Jeanny JC, Keller N, Sergeant C, Guillonneau X, Beaumont C, Courtois Y (2002) Impaired retinal iron homeostasis associated with defective phagocytosis in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 43:537–545

    PubMed  Google Scholar 

  • Zaman K, Ryu H, Hall D, O’Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21waf1/cip1, and erythropoietin. J Neurosci 19(22):9821–9830

    CAS  PubMed  Google Scholar 

  • Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang L, Gidday JM (2008) Deferroxamine preconditioning promotes long-lasting retinal ischemic tolerance. J Ocul Pharmacol Ther 24:527–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman BJ, Grisham MB, Granger ON (1990) Role of oxidants in ischemia/reperfusion-induced granulocyte infiltration. Am J Physiol 258:G185–G190

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Anand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minhas, G., Modgil, S. & Anand, A. Role of iron in ischemia-induced neurodegeneration: mechanisms and insights. Metab Brain Dis 29, 583–591 (2014). https://doi.org/10.1007/s11011-014-9522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9522-7

Keywords

Navigation