Skip to main content
Log in

Glutamate carboxypeptidase II gene polymorphisms and neural tube defects in a high-risk Chinese population

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Glutamate carboxypeptidase II (GCPII) catalyzes the hydrolysis of N-acetylaspartylglutamate into N-acetylaspartate and glutamate in the brain. Animal experiments suggested that GCPII plays an essential role in early embryonic development. Previous studies provided conflicting results on the effect of the GCPII rs61886492 C>T (or 1561C>T) polymorphism on NTDs. In the Lvliang area of Shanxi province, where the incidence of NTDs is the highest in China, a case–control study was conducted to investigate possible association between the GCPII rs61886492 and rs202676 polymorphisms and NTD risk. Results indicated all the case and control samples displayed the rs61886492 GG genotype. Although no significant differences in rs202676 genotype or allele frequencies were found between the NTD and control groups, the combined AG+GG genotype group was significantly associated with anencephaly (p = 0.03, OR = 2.11, 95% CI, 1.11–4.01), but not with spina bifida or encephalocele. Overall, the rs202676 A>G polymorphism is a potential risk factor for anencephaly. The results of this study suggest that phenotypic heterogeneity may exist among NTDs in this Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afman LA, Trijbels FJ, Blom HJ (2003) The H475Y polymorphism in the glutamate carboxypeptidase II gene increases plasma folate without affecting the risk for neural tube defects in humans. J Nutr 133(1):75–77

    PubMed  CAS  Google Scholar 

  • Barber R, Shalat S, Hendricks K, Joggerst B, Larsen R, Suarez L, Finnell R (2000) Investigation of folate pathway gene polymorphisms and the incidence of neural tube defects in a Texas hispanic population. Mol Genet Metab 70(1):45–52. doi:10.1006/mgme.2000.2991

    Article  PubMed  CAS  Google Scholar 

  • Berki AC, O’Donovan MJ, Antal M (1995) Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol 362(4):583–596. doi:10.1002/cne.903620411

    Article  PubMed  CAS  Google Scholar 

  • Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LY, Gindler J, Hong SX, Correa A (1999) Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 341(20):1485–1490. doi:10.1056/NEJM199911113412001

    Article  PubMed  CAS  Google Scholar 

  • Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151(9):862–877

    PubMed  CAS  Google Scholar 

  • Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36(2):287–306. doi:10.1002/(SICI)1097-4695(199808)36:2<287::AID-NEU13>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  • Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327(26):1832–1835. doi:10.1056/NEJM199212243272602

    Article  PubMed  CAS  Google Scholar 

  • Finnell RH, Gould A, Spiegelstein O (2003) Pathobiology and genetics of neural tube defects. Epilepsia 44(Suppl 3):14–23

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Lin L, Zheng X, Zhang T, Song X, Wang J, Li X, Li P, Chen G, Wu J, Wu L, Liu J (2007) High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Res A Clin Mol Teratol 79(10):702–707. doi:10.1002/bdra.20397

    Article  PubMed  CAS  Google Scholar 

  • Gueant-Rodriguez RM, Rendeli C, Namour B, Venuti L, Romano A, Anello G, Bosco P, Debard R, Gerard P, Viola M, Salvaggio E, Gueant JL (2003) Transcobalamin and methionine synthase reductase mutated polymorphisms aggravate the risk of neural tube defects in humans. Neurosci Lett 344(3):189–192

    Article  PubMed  CAS  Google Scholar 

  • Han L, Picker JD, Schaevitz LR, Tsai G, Feng J, Jiang Z, Chu HC, Basu AC, Berger-Sweeney J, Coyle JT (2009) Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II. Synapse 63(8):625–635. doi:10.1002/syn.20649

    Article  PubMed  CAS  Google Scholar 

  • Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20(15):5764–5774

    PubMed  CAS  Google Scholar 

  • KZ X (1989) The epidemiology of neural tube defects in China. Zhonghua Yi Xue Za Zhi

  • Lauder JM, Han VK, Henderson P, Verdoorn T, Towle AC (1986) Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neuroscience 19(2):465–493

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ren A, Zhang L, Ye R, Li S, Zheng J, Hong S, Wang T (2006) Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China. Birth Defects Res A Clin Mol Teratol 76(4):237–240. doi:10.1002/bdra.20248

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Jin G, Wang H, Wu W, Liu Y, Qian J, Fan W, Ma H, Miao R, Hu Z, Sun W, Wang Y, Jin L, Wei Q, Shen H, Huang W, Lu D (2008) Association of polymorphisms in one-carbon metabolizing genes and lung cancer risk: a case–control study in Chinese population. Lung Cancer 61(1):21–29. doi:10.1016/j.lungcan.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  • Luk KC, Kennedy TE, Sadikot AF (2003) Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism. J Neurosci 23(6):2239–2250

    PubMed  CAS  Google Scholar 

  • Nakamichi N (2011) Functional glutamate signaling in neural progenitor cells. Yakugaku Zasshi 131(9):1311–1316

    Article  PubMed  CAS  Google Scholar 

  • Nakamichi N, Takarada T, Yoneda Y (2009) Neurogenesis mediated by gamma-aminobutyric acid and glutamate signaling. J Pharmacol Sci 110(2):133–149

    Article  PubMed  CAS  Google Scholar 

  • Nguyen L, Rigo JM, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305(2):187–202

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  PubMed  CAS  Google Scholar 

  • Powrozek TA, Sari Y, Singh RP, Zhou FC (2004) Neurotransmitters and substances of abuse: effects on adult neurogenesis. Curr Neurovasc Res 1(3):251–260

    Article  PubMed  CAS  Google Scholar 

  • Relton CL, Wilding CS, Jonas PA, Lynch SA, Tawn EJ, Burn J (2003) Genetic susceptibility to neural tube defect pregnancy varies with offspring phenotype. Clin Genet 64(5):424–428

    Article  PubMed  CAS  Google Scholar 

  • Robinson MB, Blakely RD, Couto R, Coyle JT (1987) Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J Biol Chem 262(30):14498–14506

    PubMed  CAS  Google Scholar 

  • Root CM, Velazquez-Ulloa NA, Monsalve GC, Minakova E, Spitzer NC (2008) Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification. J Neurosci 28(18):4777–4784. doi:10.1523/JNEUROSCI.4873-07.2008

    Article  PubMed  CAS  Google Scholar 

  • Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39 (Database issue):D392-401. doi:10.1093/nar/gkq1021

  • Schlett K (2006) Glutamate as a modulator of embryonic and adult neurogenesis. Curr Top Med Chem 6(10):949–960

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Dunham KS, Drager U, Grier A, Anderson C, Collura J, Coyle JT (2003) Early embryonic death of glutamate carboxypeptidase II (NAALADase) homozygous mutants. Synapse 50(4):285–292. doi:10.1002/syn.10263

    Article  PubMed  CAS  Google Scholar 

  • van den Pol AN, Obrietan K, Cao V, Trombley PQ (1995) Embryonic hypothalamic expression of functional glutamate receptors. Neuroscience 67(2):419–439

    Article  PubMed  Google Scholar 

  • Zhang XM, Huang GW, Tian ZH, Ren DL, Wilson JX (2009a) Folate deficiency induces neural stem cell apoptosis by increasing homocysteine in vitro. J Clin Biochem Nutr 45(1):14–19. doi:10.3164/jcbn.08-223

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Huang GW, Tian ZH, Ren DL, Wilson JX (2009b) Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. Nutr Neurosci 12(5):226–232. doi:10.1179/147683009X423418

    Article  PubMed  Google Scholar 

  • Zhou J, Neale JH, Pomper MG, Kozikowski AP (2005) NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov 4(12):1015–1026. doi:10.1038/nrd1903

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Wicker NJ, Shaw GM, Lammer EJ, Hendricks K, Suarez L, Canfield M, Finnell RH (2003) Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metab 78(3):216–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to all the participants in this study, and we thank to all obstetricians in the local hospital at Shanxi Province, as well as the pathologists in the Department of Pathology for the diagnosis. We appreciate Dr Kunlin Zhang’s assistance for the analysis of protein crystal structure. We also thank all subjects and their family members for their cooperation in providing both clinical information and samples for the study.

The authors disclosed receipt of the following financial support for the research and/or authorship of this article: the Ministry of Science and Technology of the P. R. China, National “973” project on Population and Health (2007CB511901), National Natural Science Foundation of China (Project 81070491)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Zhang or Bo Niu.

Additional information

Hua Xie and Jin Guo contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H., Guo, J., Wang, J. et al. Glutamate carboxypeptidase II gene polymorphisms and neural tube defects in a high-risk Chinese population. Metab Brain Dis 27, 59–65 (2012). https://doi.org/10.1007/s11011-011-9272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9272-8

Keywords

Navigation