Skip to main content
Log in

New insights of DsbA-L in the pathogenesis of metabolic diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Goga A, Stoffel M (2022) Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 21(6):417–439. https://doi.org/10.1038/s41573-022-00407-5

    Article  CAS  PubMed  Google Scholar 

  2. Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH et al (2023) The global burden of metabolic disease: data from 2000 to 2019. Cell Metab 35(3):414-428.e3. https://doi.org/10.1016/j.cmet.2023.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Lee YS, Olefsky J (2021) Chronic tissue inflammation and metabolic disease. Genes Dev 35(5–6):307–328. https://doi.org/10.1101/gad.346312.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lemmer IL, Willemsen N, Hilal N, Bartelt A (2021) A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 47:101169. https://doi.org/10.1016/j.molmet.2021.101169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19(1):55–71. https://doi.org/10.1038/s41579-020-0433-9

    Article  CAS  PubMed  Google Scholar 

  6. Morel F, Aninat C (2011) The glutathione transferase kappa family. Drug Metab Rev 43(2):281–91. https://doi.org/10.3109/03602532.2011.556122

    Article  CAS  PubMed  Google Scholar 

  7. Liu M, Liu F (2012) Up- and down-regulation of adiponectin expression and multimerization: mechanisms and therapeutic implication. Biochimie 94(10):2126–2130. https://doi.org/10.1016/j.biochi.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui P, Chen C, Cui Y, Qiu X, Yue K, Li T et al (2023) DsbA-L deletion attenuates LPS-induced acute kidney injury by modulating macrophage polarization. Eur J Immunol. https://doi.org/10.1002/eji.202250071

    Article  PubMed  Google Scholar 

  9. Yang Q, Wang HC, Liu Y, Gao C, Sun L, Tao L (2016) Resveratrol cardioprotection against myocardial ischemia/reperfusion injury involves upregulation of adiponectin levels and multimerization in type 2 diabetic mice. J Cardiovasc Pharmacol 68(4):304–312. https://doi.org/10.1097/fjc.0000000000000417

    Article  CAS  PubMed  Google Scholar 

  10. Oniki K, Nohara H, Nakashima R, Obata Y, Muto N, Sakamoto Y et al (2020) The DsbA-L gene is associated with respiratory function of the elderly via its adiponectin multimeric or antioxidant properties. Sci Rep 10(1):5973. https://doi.org/10.1038/s41598-020-62872-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng Y, Zhou YH, Zhao J, Su XL, Chen NX, Zhao YQ et al (2023) Prognostic biomarker GSTK1 in head and neck squamous cell carcinoma and its correlation with immune infiltration and DNA methylation. Front Genet 14:1041042. https://doi.org/10.3389/fgene.2023.1041042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai J, Cervantes C, He S, He J, Plasko GR, Wen J et al (2020) Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun Biol 3(1):257. https://doi.org/10.1038/s42003-020-0986-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B et al (2017) DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci USA 114(46):12196–12201. https://doi.org/10.1073/pnas.1708744114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen H, Bai J, Dong F, Fang H, Zhang Y, Meng W et al (2017) Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and insulin resistance. Faseb j 31(6):2314–2326. https://doi.org/10.1096/fj.201600985R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou X, Li JQ, Wei LJ, He MZ, Jia J, Zhang JY et al (2020) Silencing of DsbA-L gene impairs the PPARγ agonist function of improving insulin resistance in a high-glucose cell model. J Zhejiang Univ Sci B 21(12):990–998. https://doi.org/10.1631/jzus.B2000432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X, Tong W, Zhao X, Zhang H, Tang Y, Deng X (2017) Chinese herb extract improves liver steatosis by promoting the expression of high molecular weight adiponectin in NAFLD rats. Mol Med Rep 16(4):5580–5586. https://doi.org/10.3892/mmr.2017.7284

    Article  CAS  PubMed  Google Scholar 

  17. Liu M, Xiang R, Wilk SA, Zhang N, Sloane LB, Azarnoush K et al (2012) Fat-specific DsbA-L overexpression promotes adiponectin multimerization and protects mice from diet-induced obesity and insulin resistance. Diabetes 61(11):2776–2786. https://doi.org/10.2337/db12-0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou L, Liu M, Zhang J, Chen H, Dong LQ, Liu F (2010) DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes 59(11):2809–2816. https://doi.org/10.2337/db10-0412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burlet E, Jain SK (2017) Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells. Mol Cell Biochem 429(1–2):1–10. https://doi.org/10.1007/s11010-016-2931-7

    Article  CAS  PubMed  Google Scholar 

  20. Achari AE, Jain SK (2016) L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose. Mol Cell Biochem 414(1–2):105–113. https://doi.org/10.1007/s11010-016-2664-7

    Article  CAS  PubMed  Google Scholar 

  21. Harris JM, Meyer DJ, Coles B, Ketterer B (1991) A novel glutathione transferase (13–13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes. Biochem J 278(Pt1):137–41. https://doi.org/10.1042/bj2780137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu M, Zhou L, Xu A, Lam KS, Wetzel MD, Xiang R et al (2008) A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci USA 105(47):18302–18307. https://doi.org/10.1073/pnas.0806341105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Thomson RE, Bigley AL, Foster JR, Jowsey IR, Elcombe CR, Orton TC et al (2004) Tissue-specific expression and subcellular distribution of murine glutathione S-transferase class kappa. J Histochem Cytochem 52(5):653–662. https://doi.org/10.1177/002215540405200509

    Article  CAS  PubMed  Google Scholar 

  24. Knight TR, Choudhuri S, Klaassen CD (2007) Constitutive mRNA expression of various glutathione S-transferase isoforms in different tissues of mice. Toxicol Sci 100(2):513–524. https://doi.org/10.1093/toxsci/kfm233

    Article  CAS  PubMed  Google Scholar 

  25. Morel F, Rauch C, Petit E, Piton A, Theret N, Coles B et al (2004) Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem 279(16):16246–16253. https://doi.org/10.1074/jbc.M313357200

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Chen H, Wei L, Hu D, Dong K, Jia W et al (2015) Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to suppress ER stress and adiponectin down-regulation in adipocytes. J Biol Chem 290(16):10143–10148. https://doi.org/10.1074/jbc.M115.645416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma A, Mah M, Ritchie RH, De Blasio MJ (2022) The adiponectin signalling pathway—a therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 232:108008. https://doi.org/10.1016/j.pharmthera.2021.108008

    Article  CAS  PubMed  Google Scholar 

  28. Gao M, Cui D, Xie J (2023) The role of adiponectin for immune cell function in metabolic diseases. Diabetes Obes Metab 25(9):2427–2438. https://doi.org/10.1111/dom.15151

    Article  CAS  PubMed  Google Scholar 

  29. Achari AE, Jain SK (2017) l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes. Arch Biochem Biophys 630:54–65. https://doi.org/10.1016/j.abb.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  30. Perdomo CM, Cohen RV, Sumithran P, Clément K, Frühbeck G (2023) Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 401(10382):1116–1130. https://doi.org/10.1016/s0140-6736(22)02403-5

    Article  PubMed  Google Scholar 

  31. Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM (2023) Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. BioFactors 49(2):297–321. https://doi.org/10.1002/biof.1921

    Article  CAS  PubMed  Google Scholar 

  32. Sattar N, McMurray JJV, McInnes IB, Aroda VR, Lean MEJ (2023) Treating chronic diseases without tackling excess adiposity promotes multimorbidity. Lancet Diabetes Endocrinol 11(1):58–62. https://doi.org/10.1016/s2213-8587(22)00317-5

    Article  PubMed  Google Scholar 

  33. Lin X, Li H (2021) Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne) 12:706978. https://doi.org/10.3389/fendo.2021.706978

    Article  PubMed  Google Scholar 

  34. Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320(3):C375-c391. https://doi.org/10.1152/ajpcell.00379.2020

    Article  CAS  PubMed  Google Scholar 

  35. Lustig RH, Collier D, Kassotis C, Roepke TA, Kim MJ, Blanc E et al (2022) Obesity I: overview and molecular and biochemical mechanisms. Biochem Pharmacol 199:115012. https://doi.org/10.1016/j.bcp.2022.115012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Unamuno X, Gómez-Ambrosi J, Ramírez B, Rodríguez A, Becerril S, Valentí V et al (2021) NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling. Cell Mol Immunol 18(4):1045–1057. https://doi.org/10.1038/s41423-019-0296-z

    Article  CAS  PubMed  Google Scholar 

  37. Prasun P (2020) Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 1866(10):165838. https://doi.org/10.1016/j.bbadis.2020.165838

    Article  CAS  PubMed  Google Scholar 

  38. Ahuja P, Ng CF, Pang BPS, Chan WS, Tse MCL, Bi X et al (2022) Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy 18(6):1367–1384. https://doi.org/10.1080/15548627.2021.1985257

    Article  CAS  PubMed  Google Scholar 

  39. Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J (2023) ER stress and inflammation crosstalk in obesity. Med Res Rev 43(1):5–30. https://doi.org/10.1002/med.21921

    Article  CAS  PubMed  Google Scholar 

  40. Han YB, Tian M, Wang XX, Fan DH, Li WZ, Wu F et al (2020) Berberine ameliorates obesity-induced chronic inflammation through suppression of ER stress and promotion of macrophage M2 polarization at least partly via downregulating lncRNA Gomafu. Int Immunopharmacol 86:106741. https://doi.org/10.1016/j.intimp.2020.106741

    Article  CAS  PubMed  Google Scholar 

  41. Yang M, Luo S, Jiang N, Wang X, Han Y, Zhao H et al (2021) DsbA-L Ameliorates renal injury through the AMPK/NLRP3 inflammasome signaling pathway in diabetic nephropathy. Front Physiol 12:659751. https://doi.org/10.3389/fphys.2021.659751

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bai S, Cheng L, Yang Y, Fan C, Zhao D, Qin Z et al (2016) C1q/TNF-related protein 9 protects diabetic rat heart against ischemia reperfusion injury: role of endoplasmic reticulum stress. Oxid Med Cell Longev 2016:1902025. https://doi.org/10.1155/2016/1902025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wanders D, Graff EC, White BD, Judd RL (2013) Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice. PloS one 8(8):e71285. https://doi.org/10.1371/journal.pone.0071285

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao F, Fang Q, Zhang R, Lu J, Lu H, Wang C et al (2009) Polymorphism of DsbA-L gene associates with insulin secretion and body fat distribution in Chinese population. Endocr J 56(3):487–494. https://doi.org/10.1507/endocrj.k08e-322

    Article  CAS  PubMed  Google Scholar 

  45. Oniki K (2022) Multifaceted clinical research on obesity-related disease prevention focusing on the DsbA-L gene. Yakugaku Zasshi 142(11):1177–1183. https://doi.org/10.1248/yakushi.22-00128

    Article  CAS  PubMed  Google Scholar 

  46. Oniki K, Saruwatari J (2019) a multifaceted approach regarding the association of the DsbA-L gene with the risk of obesity-related diseases based on clinical pharmacogenetics. Yakugaku Zasshi 139(1):53–60. https://doi.org/10.1248/yakushi.18-00163-3

    Article  CAS  PubMed  Google Scholar 

  47. Zhou L, Liu F (2010) Autophagy: roles in obesity-induced ER stress and adiponectin downregulation in adipocytes. Autophagy 6(8):1196–1197. https://doi.org/10.4161/auto.6.8.13478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim J, Kim HS, Chung JH (2023) Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp Mol Med 55(3):510–519. https://doi.org/10.1038/s12276-023-00965-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Decout A, Katz JD, Venkatraman S, Ablasser A (2021) The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21(9):548–569. https://doi.org/10.1038/s41577-021-00524-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen C, Xu P (2023) Cellular functions of cGAS-STING signaling. Trends Cell Biol 33(8):630–648. https://doi.org/10.1016/j.tcb.2022.11.001

    Article  CAS  PubMed  Google Scholar 

  51. Feng Z, Liao X, Peng J, Quan J, Zhang H, Huang Z et al (2023) PCSK9 causes inflammation and cGAS/STING pathway activation in diabetic nephropathy. Faseb j 37(9):e23127. https://doi.org/10.1096/fj.202300342RRR

    Article  CAS  PubMed  Google Scholar 

  52. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H et al (2022) The cGAS-STING signaling in cardiovascular and metabolic diseases: future novel target option for pharmacotherapy. Acta Pharm Sin B 12(1):50–75. https://doi.org/10.1016/j.apsb.2021.05.011

    Article  CAS  PubMed  Google Scholar 

  53. Ma XM, Geng K, Law BY, Wang P, Pu YL, Chen Q et al (2023) Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes. Cell Biol Toxicol 39(1):277–299. https://doi.org/10.1007/s10565-021-09692-z

    Article  CAS  PubMed  Google Scholar 

  54. Mao Y, Luo W, Zhang L, Wu W, Yuan L, Xu H et al (2017) STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler Thromb Vasc Biol 37(5):920–929. https://doi.org/10.1161/atvbaha.117.309017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jia M, Xu T, Xu YJ, Liu Y (2023) Dietary fatty acids activate or deactivate brown and beige fat. Life Sci 330:121978. https://doi.org/10.1016/j.lfs.2023.121978

    Article  CAS  PubMed  Google Scholar 

  56. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al (2023) Classification and diagnosis of diabetes: standards of care in diabetes-2023. Diabetes Care 46(Suppl 1):S19–S40. https://doi.org/10.2337/dc23-S002

    Article  CAS  PubMed  Google Scholar 

  57. Gregg EW, Buckley J, Ali MK, Davies J, Flood D, Mehta R et al (2023) Improving health outcomes of people with diabetes: target setting for the WHO Global Diabetes Compact. Lancet 401(10384):1302–1312. https://doi.org/10.1016/s0140-6736(23)00001-6

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guo H, Wu H, Li Z (2023) The pathogenesis of diabetes. Int J Mol Sci. https://doi.org/10.3390/ijms24086978

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y (2020) Oxidative stress and diabetes: antioxidative strategies. Front Med 14(5):583–600. https://doi.org/10.1007/s11684-019-0729-1

    Article  PubMed  Google Scholar 

  60. An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y et al (2023) The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 22(1):237. https://doi.org/10.1186/s12933-023-01965-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Samadi A, Gurlek A, Sendur SN, Karahan S, Akbiyik F, Lay I (2019) Oxysterol species: reliable markers of oxidative stress in diabetes mellitus. J Endocrinol Invest 42(1):7–17. https://doi.org/10.1007/s40618-018-0873-5

    Article  CAS  PubMed  Google Scholar 

  62. Xuan Y, Gào X, Anusruti A, Holleczek B, Jansen E, Muhlack DC et al (2019) Association of serum markers of oxidative stress with incident major cardiovascular events, cancer incidence, and all-cause mortality in type 2 diabetes patients: pooled results from two cohort studies. Diabetes Care 42(8):1436–1445. https://doi.org/10.2337/dc19-0292

    Article  CAS  PubMed  Google Scholar 

  63. Wronka M, Krzemińska J, Młynarska E, Rysz J, Franczyk B (2022) The influence of lifestyle and treatment on oxidative stress and inflammation in diabetes. Int J Mol Sci. https://doi.org/10.3390/ijms232415743

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gao D, Jiao J, Wang Z, Huang X, Ni X, Fang S et al (2022) The roles of cell-cell and organ-organ crosstalk in the type 2 diabetes mellitus associated inflammatory microenvironment. Cytokine Growth Factor Rev 66:15–25. https://doi.org/10.1016/j.cytogfr.2022.04.002

    Article  CAS  PubMed  Google Scholar 

  65. Gao P, Yang M, Chen X, Xiong S, Liu J, Sun L (2020) DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Clin Sci (Lond) 134(7):677–694. https://doi.org/10.1042/cs20200005

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y, Chen W, Li C, Li L, Yang M, Jiang N et al (2023) DsbA-L interacting with catalase in peroxisome improves tubular oxidative damage in diabetic nephropathy. Redox Biol 66:102855. https://doi.org/10.1016/j.redox.2023.102855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lian K, Guo X, Huang Q, Tan Z, Xia C, Wang R et al (2016) Reduction levels and the effects of high-molecular-weight adiponectin via AMPK/eNOS in Chinese type 2 diabetes. Exp Clin Endocrinol Diabetes 124(9):541–547. https://doi.org/10.1055/s-0042-109262

    Article  CAS  PubMed  Google Scholar 

  68. Deng X, Yang G, Zheng X, Yang Y, Qin H, Liu ZX et al (2020) Plasma mtDNA copy numbers are associated with GSTK1 expression and inflammation in type 2 diabetes. Diabet Med 37(11):1874–1878. https://doi.org/10.1111/dme.14132

    Article  CAS  PubMed  Google Scholar 

  69. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350

    Article  CAS  PubMed  Google Scholar 

  70. Solinas G, Becattini B (2017) JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 6(2):174–184. https://doi.org/10.1016/j.molmet.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  71. Yung JHM, Giacca A (2020) Role of c-Jun N-terminal Kinase (JNK) in obesity and type 2 diabetes. Cells. https://doi.org/10.3390/cells9030706

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gehi BR, Gadhave K, Uversky VN, Giri R (2022) Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling. Cell Mol Life Sci 79(4):202. https://doi.org/10.1007/s00018-022-04230-4

    Article  CAS  PubMed  Google Scholar 

  73. Wang J, Hu K, Cai X, Yang B, He Q, Wang J et al (2022) Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 12(1):18–32. https://doi.org/10.1016/j.apsb.2021.07.023

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A (2022) Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Semin Cancer Biol 80:1–17. https://doi.org/10.1016/j.semcancer.2019.12.008

    Article  PubMed  Google Scholar 

  75. Acosta-Martinez M, Cabail MZ (2022) The PI3K/Akt Pathway in Meta-Inflammation. Int J Mol Sci. https://doi.org/10.3390/ijms232315330

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bai J, Liu F (2019) The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes 68(6):1099–1108. https://doi.org/10.2337/dbi18-0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bai J, Liu F (2021) cGAS-STING signaling and function in metabolism and kidney diseases. J Mol Cell Biol 13(10):728–738. https://doi.org/10.1093/jmcb/mjab066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Badmus OO, Hillhouse SA, Anderson CD, Hinds TD, Stec DE (2022) Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 136(18):1347–1366. https://doi.org/10.1042/cs20220572

    Article  CAS  PubMed  Google Scholar 

  79. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS (2023) Global burden of liver disease: 2023 update. J Hepatol 79(2):516–537. https://doi.org/10.1016/j.jhep.2023.03.017

    Article  PubMed  Google Scholar 

  80. Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L (2023) The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77(4):1335–1347. https://doi.org/10.1097/hep.0000000000000004

    Article  PubMed  Google Scholar 

  81. Wiering L, Tacke F (2023) Treating inflammation to combat non-alcoholic fatty liver disease. J Endocrinol. https://doi.org/10.1530/joe-22-0194

    Article  PubMed  Google Scholar 

  82. Hou X, Yin S, Ren R, Liu S, Yong L, Liu Y et al (2021) Myeloid-cell-specific IL-6 signaling promotes MicroRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis. Hepatology 74(1):116–132. https://doi.org/10.1002/hep.31658

    Article  CAS  PubMed  Google Scholar 

  83. Potoupni V, Georgiadou M, Chatzigriva E, Polychronidou G, Markou E, Zapantis Gakis C et al (2021) Circulating tumor necrosis factor-α levels in non-alcoholic fatty liver disease: a systematic review and a meta-analysis. J Gastroenterol Hepatol 36(11):3002–3014. https://doi.org/10.1111/jgh.15631

    Article  CAS  PubMed  Google Scholar 

  84. Wang Q, Ou Y, Hu G, Wen C, Yue S, Chen C et al (2020) Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice. Br J Pharmacol 177(8):1806–1821. https://doi.org/10.1111/bph.14938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ramanathan R, Ali AH, Ibdah JA (2022) Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci. https://doi.org/10.3390/ijms23137280

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zheng Y, Wang S, Wu J, Wang Y (2023) Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med 21(1):510. https://doi.org/10.1186/s12967-023-04367-1

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ajaz S, McPhail MJ, Gnudi L, Trovato FM, Mujib S, Napoli S et al (2021) Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD). Mitochondrion 57:119–130. https://doi.org/10.1016/j.mito.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  88. Wu L, Mo W, Feng J, Li J, Yu Q, Li S et al (2020) Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway. Br J Pharmacol 177(16):3760–3777. https://doi.org/10.1111/bph.15099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shih PH, Shiue SJ, Chen CN, Cheng SW, Lin HY, Wu LW et al (2021) Fucoidan and fucoxanthin attenuate hepatic steatosis and inflammation of NAFLD through modulation of leptin/adiponectin axis. Mar Drugs. https://doi.org/10.3390/md19030148

    Article  PubMed  PubMed Central  Google Scholar 

  90. Moyce Gruber BL, Cole LK, Xiang B, Fonseca MA, Klein J, Hatch GM et al (2022) Adiponectin deficiency induces hepatic steatosis during pregnancy and gestational diabetes in mice. Diabetologia 65(4):733–747. https://doi.org/10.1007/s00125-021-05649-3

    Article  CAS  PubMed  Google Scholar 

  91. Selvais CM, Davis-López de Carrizosa MA, Nachit M, Versele R, Dubuisson N, Noel L et al (2023) AdipoRon enhances healthspan in middle-aged obese mice: striking alleviation of myosteatosis and muscle degenerative markers. J Cachexia Sarcopenia Muscle 14(1):464–478. https://doi.org/10.1002/jcsm.13148

    Article  PubMed  Google Scholar 

  92. Wang ZV, Scherer PE (2008) DsbA-L is a versatile player in adiponectin secretion. Proc Natl Acad Sci USA 105(47):18077–18078. https://doi.org/10.1073/pnas.0810027105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  93. Oniki K, Watanabe T, Kudo M, Izuka T, Ono T, Matsuda K et al (2018) Modeling of the weight status and risk of nonalcoholic fatty liver disease in elderly individuals: the potential impact of the disulfide bond-forming oxidoreductase a-like protein (DsbA-L) polymorphism on the weight status. CPT Pharmacometrics Syst Pharmacol 7(6):384–393. https://doi.org/10.1002/psp4.12292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Scorletti E, Carr RM (2022) A new perspective on NAFLD: Focusing on lipid droplets. J Hepatol 76(4):934–945. https://doi.org/10.1016/j.jhep.2021.11.009

    Article  CAS  PubMed  Google Scholar 

  95. An L, Wirth U, Koch D, Schirren M, Drefs M, Koliogiannis D et al (2022) The role of gut-derived lipopolysaccharides and the intestinal barrier in fatty liver diseases. J Gastrointest Surg 26(3):671–683. https://doi.org/10.1007/s11605-021-05188-7

    Article  PubMed  Google Scholar 

  96. Orea-Soufi A, Paik J, Bragança J, Donlon TA, Willcox BJ, Link W (2022) FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci 43(12):1070–1084. https://doi.org/10.1016/j.tips.2022.09.010

    Article  CAS  PubMed  Google Scholar 

  97. Lundell LS, Massart J, Altıntaş A, Krook A, Zierath JR (2019) Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle. Mol Metab 20:79–88. https://doi.org/10.1016/j.molmet.2018.09.011

    Article  CAS  PubMed  Google Scholar 

  98. Ito Y, Daitoku H, Fukamizu A (2009) Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. Biochem Biophys Res Commun 378(2):290–295. https://doi.org/10.1016/j.bbrc.2008.11.043

    Article  CAS  PubMed  Google Scholar 

  99. Sundaresan S, Puthanveetil P (2017) Is FoxO1 the culprit, partner in crime, or a protector in systemic inflammation? Am J Physiol Cell Physiol 313(2):C239-c241. https://doi.org/10.1152/ajpcell.00194.2016

    Article  PubMed  Google Scholar 

  100. Chen L, Gao B, Zhang Y, Lu H, Li X, Pan L et al (2019) PAR2 promotes M1 macrophage polarization and inflammation via FOXO1 pathway. J Cell Biochem 120(6):9799–9809. https://doi.org/10.1002/jcb.28260

    Article  CAS  PubMed  Google Scholar 

  101. Lee S, Usman TO, Yamauchi J, Chhetri G, Wang X, Coudriet GM et al (2022) Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest. https://doi.org/10.1172/jci154333

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang A, Liu M, Liu X, Dong LQ, Glickman RD, Slaga TJ et al (2011) Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L. J Biol Chem 286(1):60–66. https://doi.org/10.1074/jbc.M110.188144

    Article  CAS  PubMed  Google Scholar 

  103. Li C, Ma D, Chen Y, Liu W, Jin F, Bo L (2022) Selective inhibition of JNK located on mitochondria protects against mitochondrial dysfunction and cell death caused by endoplasmic reticulum stress in mice with LPS-induced ALI/ARDS. Int J Mol Med. https://doi.org/10.3892/ijmm.2022.5141

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lin KH, Ng SC, Paul CR, Chen HC, Zeng RY, Liu JS et al (2021) MicroRNA-210 repression facilitates advanced glycation end-product (AGE)-induced cardiac mitochondrial dysfunction and apoptosis via JNK activation. J Cell Biochem 122(12):1873–1885. https://doi.org/10.1002/jcb.30146

    Article  CAS  PubMed  Google Scholar 

  105. Fadel F, Al-Kandari N, Khashab F, Al-Saleh F, Al-Maghrebi M (2020) JNK inhibition alleviates oxidative DNA damage, germ cell apoptosis, and mitochondrial dysfunction in testicular ischemia reperfusion injury. Acta Biochim Biophys Sin (Shanghai) 52(8):891–900. https://doi.org/10.1093/abbs/gmaa074

    Article  CAS  PubMed  Google Scholar 

  106. Jiang Y, Xu J, Huang P, Yang L, Liu Y, Li Y et al (2022) Scoparone improves nonalcoholic steatohepatitis through alleviating JNK/Sab signaling pathway-mediated mitochondrial dysfunction. Front Pharmacol 13:863756. https://doi.org/10.3389/fphar.2022.863756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers who participated in the review and BioRender (BioRender.com) for the Figure 1.

Funding

This work was supported by the National Natural Science Foundation of China [81500036], Scientific Research Fund of Hunan Provincial Education Department [21B0005], Hunan Provincial Natural Science Foundation [2022JJ30917, 2022JJ30832], and Special Fund for Rehabilitation Medicine of the National Clinical Research Center for Geriatric Disorders Clinical Research Fund [2021KFJJ09].

Author information

Authors and Affiliations

Authors

Contributions

Siqi Li: Writing- Original draft preparation. Jinfa Wan and Qiong Huang: Writing- Reviewing and Editing. Zhenyu Peng: Conceptualization. Baimei He: Supervision, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Baimei He.

Ethics declarations

Conflict of interest

The authors declared that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wan, J., Peng, Z. et al. New insights of DsbA-L in the pathogenesis of metabolic diseases. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04964-8

Keywords

Navigation