Skip to main content

Advertisement

Log in

The role of WWP1 and WWP2 in bone/cartilage development and diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone and cartilage diseases are often associated with trauma and senescence, manifested as pain and limited mobility. The repair of bone and cartilage lesion by mesenchymal stem cells is regulated by various transcription factors. WW domain-containing protein 1 (WWP1) and WW domain-containing protein 2 (WWP2) are named for WW domain which recognizes PPXY (phono Ser Pro and Pro Arg) motifs of substrate. WWP1and WWP2 are prominent components of the homologous to the E6-AP carboxyl terminus (HECT) subfamily, a group of the ubiquitin ligase. Recently, some studies have found that WWP1 and WWP2 play an important role in the pathogenesis of bone and cartilage diseases and regulate the level and the transactivation of various transcription factors through ubiquitination. Therefore, this review summarizes the distribution and effects of WWP1 and WWP2 in the development of bone and cartilage, discusses the potential mechanism and therapeutic drugs in bone and cartilage diseases such as osteoarthritis, fracture, and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Chan W, Tan Z, To M, Chan D (2021) Regulation and role of transcription factors in osteogenesis. Int J Mol Sci 22:5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mokuda S, Nakamichi R, Matsuzaki T, Ito Y, Sato T, Miyata K, Inui M, Olmer M, Sugiyama E, Lotz M, Asahara H (2019) Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nat Commun 10:2429

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tucker WO, Kinghorn AB, Fraser LA, Cheung YW, Tanner JA (2018) Selection and characterization of a DNA aptamer specifically targeting human HECT ubiquitin ligase WWP1. Int J Mol Sci 19:763

    Article  PubMed  PubMed Central  Google Scholar 

  4. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20:1242–1253

    Article  CAS  PubMed  Google Scholar 

  5. Wu Z, Zan P, Li S, Liu J, Wang J, Chen D, Wang H, Qian Y, Luo L, Huang X (2015) Knockdown of WWP1 inhibits growth and invasion, but induces apoptosis of osteosarcoma cells. Int J Clin Exp Pathol 8:7869–7877

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang B, Zhao X, Chen W, Diao W, Ding M, Qin H, Li B, Cao W, Chen W, Fu Y, He K, Gao J, Chen M, Lin T, Deng Y, Yan C, Guo H (2022) Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation. Nat Commun 13:4141

  7. Hu X, Yu J, Lin Z, Feng R, Wang ZW, Chen G (2021) The emerging role of WWP1 in cancer development and progression. Cell Death Discov 7:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee YR, Yehia L, Kishikawa T, Ni Y, Leach B, Zhang J, Panch N, Liu J, Wei W, Eng C, Pandolfi PP (2020) WWP1 Gain-of-Function Inactivation of PTEN in Cancer Predisposition. N Engl J Med 382:2103–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Subik K, Shu L, Wu C, Liang Q, Hicks D, Boyce B, Schiffhauer L, Chen D, Chen C, Tang P, Xing L (2012) The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis. Bone 50:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang Y, Xu Y, Feng S, He P, Sheng B, Ni J (2021) miR-19b enhances osteogenic differentiation of mesenchymal stem cells and promotes fracture healing through the WWP1/Smurf2-mediated KLF5/β-catenin signaling pathway. Exp Mol Med 53:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shu L, Zhang H, Boyce BF, Xing L (2013) Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res 28:1925–1935

    Article  CAS  PubMed  Google Scholar 

  12. Zhang R, Zhang J, Luo W, Luo Z, Shi S (2019) WWP2 Is one promising novel oncogene. Pathol Oncol Res 25:443–446

    Article  PubMed  Google Scholar 

  13. Zhang Q, Gong W, Wu H, Wang J, Jin Q, Lin C, Xu S, Bao W, Wang Y, Wu J, Feng S, Zhao C, Chen B, Liu Z (2021) DKK1 suppresses WWP2 to enhance bortezomib resistance in multiple myeloma via regulating GLI2 ubiquitination. Carcinogenesis 42:1223–1231

    Article  CAS  PubMed  Google Scholar 

  14. Clements AE, Bravo V, Koivisto C, Cohn DE, Leone G (2015) WWP2 and its association with PTEN in endometrial cancer. Gynecol Oncol Rep 13:26–29

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li H, Zhang P, Zhang Q, Li C, Zou W, Chang Z, Cui CP, Zhang L (2018) WWP2 is a physiological ubiquitin ligase for phosphatase and tensin homolog (PTEN) in mice. J Biol Chem 293:8886–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang K, Liu J, Zhao X, Li H, Luo G, Yu Y, Guo Y, Zhang L, Zhu J, Wang S, Hua W, Yang A, Zhang R, Li J (2020) WWP2 regulates proliferation of gastric cancer cells in a PTEN-dependent manner. Biochem Biophys Res Commun 521:652–659

    Article  CAS  PubMed  Google Scholar 

  17. Zou W, Chen X, Shim JH, Huang Z, Brady N, Hu D, Drapp R, Sigrist K, Glimcher LH, Jones D (2011) The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid. Nat Cell Biol 13:59–65

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura Y, Yamamoto K, He X, Otsuki B, Kim Y, Murao H, Soeda T, Tsumaki N, Deng JM, Zhang Z, Behringer RR, Crombrugghe B, Postlethwait JH, Warman ML, Nakamura T, Akiyama H (2011) Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat Commun 2:251

    Article  PubMed  Google Scholar 

  19. Pan Y, Tang Y, Gu H, Ge W (2022) Ubiquitin modification in osteogenic differentiation and bone formation: from mechanisms to clinical significance. Front Cell Dev Biol 10:1033223

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Malcolm DW, Benoit D (2017) Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 139:127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23:1972–1984

    Article  CAS  PubMed  Google Scholar 

  22. Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F, Wrana JL (2005) Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 19:297–308

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Gonzalo FR, Rosa JL (2005) The HERC proteins: functional and evolutionary insights. Cell Mol Life Sci 62:1826–1838

    Article  CAS  PubMed  Google Scholar 

  24. Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, Hunter T, Noel JP (2003) Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 11:249–259

    Article  CAS  PubMed  Google Scholar 

  25. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P (1995) Characterization of a novel protein-binding module–the WW domain. FEBS Lett 369:67–71

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Liu Z, Chen X, Li J, Yao W, Huang S, Gu A, Lei QY, Mao Y, Wen W (2019) A multi-lock inhibitory mechanism for fine-tuning enzyme activities of the HECT family E3 ligases. Nat Commun 10:3162

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen Z, Jiang H, Xu W, Li X, Dempsey DR, Zhang X, Devreotes P, Wolberger C, Amzel LM, Gabelli SB, Cole PA (2017) A tunable brake for HECT ubiquitin ligases. Mol Cell 66:345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garrone NF, Blazer-Yost BL, Weiss RB, Lalouel JM, Rohrwasser A (2009) A human polymorphism affects NEDD4L subcellular targeting by leading to two isoforms that contain or lack a C2 domain. BMC Cell Biol 10:26

    Article  PubMed  PubMed Central  Google Scholar 

  30. Plant PJ, Yeger H, Staub O, Howard P, Rotin D (1997) The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 272:32329–32336

    Article  CAS  PubMed  Google Scholar 

  31. Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL, Forman-Kay JD (2007) Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130:651–662

    Article  CAS  PubMed  Google Scholar 

  32. Tu M, Tang J, He H, Cheng P, Chen C (2017) MiR-142-5p promotes bone repair by maintaining osteoblast activity. J Bone Miner Metab 35:255–264

    Article  CAS  PubMed  Google Scholar 

  33. Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH (2006) Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312:1223–1227

    Article  CAS  PubMed  Google Scholar 

  34. Lee KS, Hong SH, Bae SC (2002) Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 21:7156–7163

    Article  CAS  PubMed  Google Scholar 

  35. Zhu W, He X, Hua Y, Li Q, Wang J, Gan X (2017) The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation. J Biol Chem 292:11178–11188

    Article  PubMed  PubMed Central  Google Scholar 

  36. Komori T (2022) Whole aspect of Runx2 functions in skeletal development. Int J Mol Sci 23:5776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y (2023) Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 103:1899–1964

    Article  CAS  PubMed  Google Scholar 

  38. Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho TV, Chai Y (2022) Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun 13:4803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ravindran S, George A (2014) Multifunctional ECM proteins in bone and teeth. Exp Cell Res 325:148–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beck L (2019) Expression and function of Slc34 sodium-phosphate co-transporters in skeleton and teeth. Pflugers Arch 471:175–184

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Jing Y, Zhang R, Zhang Q, Wang J, Martin A, Feng JQ (2020) Hypophosphatemic rickets accelerate chondrogenesis and cell trans-differentiation from TMJ chondrocytes into bone cells via a sharp increase in beta-catenin. Bone 131:115151

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Zhang Y, Ramachandran A, George A (2016) DSPP Is essential for normal development of the dental-craniofacial complex. J Dent Res 95:302–310

    Article  CAS  PubMed  Google Scholar 

  43. Wen Q, Jing J, Han X, Feng J, Yuan Y, Ma Y, Chen S, Ho TV, Chai Y (2020) Runx2 regulates mouse tooth root development via activation of WNT inhibitor NOTUM. J Bone Miner Res 35:2252–2264

    Article  CAS  PubMed  Google Scholar 

  44. Abdel ME, Ke Y, Ji J, El-Hashash A (2018) Stem cells applications in bone and tooth repair and regeneration: new insights, tools, and hopes. J Cell Physiol 233:1825–1835

    Article  Google Scholar 

  45. Fu J, Zhang X, Zheng H, Yang G, Chen Z, Yuan G (2022) A WWP2-PTEN-KLF5 signaling axis regulates odontoblast differentiation and dentinogenesis in mice. J Biol Chem 298:102220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fu J, Zheng H, Xue Y, Jin R, Yang G, Chen Z, Yuan G (2021) WWP2 promotes odontoblastic differentiation by monoubiquitinating KLF5. J Dent Res 100:432–439

    Article  CAS  PubMed  Google Scholar 

  47. Yang J, Qin S, Yi C, Ma G, Zhu H, Zhou W, Xiong Y, Zhu X, Wang Y, He L, Guo X (2011) MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett 585:2992–2997

    Article  CAS  PubMed  Google Scholar 

  48. Inui M, Mokuda S, Sato T, Tamano M, Takada S, Asahara H (2018) Dissecting the roles of miR-140 and its host gene. Nat Cell Biol 20:516–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zou W, Shao R, Jones D (2018) Reply to ‘Dissecting the role of miR-140 and its host gene.’ Nat Cell Biol 20:519–520

    Article  CAS  PubMed  Google Scholar 

  50. Shao R, Liu J, Yan G, Zhang J, Han Y, Guo J, Xu Z, Yuan Z, Liu J, Malumbres M, Wan L, Wei W, Zou W (2016) Cdh1 regulates craniofacial development via APC-dependent ubiquitination and activation of Goosecoid. Cell Res 26:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu J, Wan L, Liu J, Yuan Z, Zhang J, Guo J, Malumbres M, Liu J, Zou W, Wei W (2016) Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner. Cell Discov 2:15044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song H, Park KH (2020) Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol 67:12–23

    Article  CAS  PubMed  Google Scholar 

  53. Yamashita S, Miyaki S, Kato Y, Yokoyama S, Sato T, Barrionuevo F, Akiyama H, Scherer G, Takada S, Asahara H (2012) L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem 287:22206–22215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Golan T, Yaniv A, Bafico A, Liu G, Gazit A (2004) The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. beta-catenin signaling cascade. J Biol Chem 279:14879–14888

    Article  CAS  PubMed  Google Scholar 

  55. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580:4214–4217

    Article  CAS  PubMed  Google Scholar 

  56. Xiao Q, Huang L, Zhang Z, Chen X, Luo J, Zhang Z, Chen S, Shu Y, Han Z, Cao K (2017) Overexpression of miR-140 inhibits proliferation of osteosarcoma cells via suppression of histone deacetylase 4. Oncol Res 25:267–275

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tuerlings MM, Janssen G, Boone II, van Hoolwerff MM, Rodriguez RA, Houtman EE, Suchiman E, van der Wal R, Nelissen R, Coutinho DAR, van Veelen P, Ramos Y, Meulenbelt II (2022) WWP2 confers risk to osteoarthritis by affecting cartilage matrix deposition via hypoxia associated genes. Osteoarthr Cartil

  58. Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK, Asahara H (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J (2009) Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord 10:148

    Article  PubMed  PubMed Central  Google Scholar 

  60. Woods S, Charlton S, Cheung K, Hao Y, Soul J, Reynard LN, Crowe N, Swingler TE, Skelton AJ, Piróg KA, Miles CG, Tsompani D, Jackson RM, Dalmay T, Clark IM, Barter MJ, Young DA (2020) microRNA-seq of cartilage reveals an overabundance of miR-140-3p which contains functional isomiRs. RNA 26:1575–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G, Pap T (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15:1072–1076

    Article  CAS  PubMed  Google Scholar 

  62. Tardif G, Pelletier JP, Fahmi H, Hum D, Zhang Y, Kapoor M, Martel-Pelletier J (2013) NFAT3 and TGF-β/SMAD3 regulate the expression of miR-140 in osteoarthritis. Arthritis Res Ther 15:R197

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang B, Zhong JL, Jiang N, Shang J, Wu B, Chen YF, Lu HD (2022) Exploring the mystery of osteoarthritis using bioinformatics analysis of cartilage tissue. Comb Chem High Throughput Screen 25:53–63

    Article  CAS  PubMed  Google Scholar 

  64. Saito T, Tanaka S (2017) Molecular mechanisms underlying osteoarthritis development: Notch and NF-kappaB. Arthritis Res Ther 19:94

    Article  PubMed  PubMed Central  Google Scholar 

  65. Flasza M, Nguyen HN, Mazaleyrat S, Clémence S, Villemant C, Clarke R, Baron M (2006) Regulation of the nuclear localization of the human Nedd4-related WWP1 protein by Notch. Mol Membr Biol 23:269–276

    Article  PubMed  Google Scholar 

  66. Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M, Awad H, Chen D, Xing L (2011) Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells 29:1601–1610

    Article  CAS  PubMed  Google Scholar 

  67. Rhee J, Park SH, Kim SK, Kim JH, Ha CW, Chun CH, Chun JS (2017) Inhibition of BATF/JUN transcriptional activity protects against osteoarthritic cartilage destruction. Ann Rheum Dis 76:427–434

    Article  CAS  PubMed  Google Scholar 

  68. Lin Z, Miao J, Zhang T, He M, Wang Z, Feng X, Bai L (2021) JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy. Aging Cell 20:e13306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. den Hollander W, Pulyakhina I, Boer C, Bomer N, van der Breggen R, Arindrarto W, Couthino DAR, Lakenberg N, Sentner T, Laros J, T HP, Slagboom E, Nelissen R, van Meurs J, Ramos Y, Meulenbelt I, (2019) Annotating transcriptional effects of genetic variants in disease-relevant tissue: transcriptome-wide allelic imbalance in osteoarthritic cartilage. Arthritis Rheumatol 71:561–570

    Article  Google Scholar 

  70. Gao F, Yao Y, Zhang Y, Tian J (2019) Integrating genome-wide association studies with pathway analysis and gene expression analysis highlights novel osteoarthritis risk pathways and genes. Front Genet 10:827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li L, Meng T, Jia Z, Zhu G, Shi B (2010) Single nucleotide polymorphism associated with nonsyndromic cleft palate influences the processing of miR-140. Am J Med Genet A 152A:856–862

    Article  CAS  PubMed  Google Scholar 

  72. Huang X, Ma J, Wei Y, Chen H, Chu W (2023) Identification of biomarkers associated with diagnosis of postmenopausal osteoporosis patients based on bioinformatics and machine learning. Front Genet 14:1198417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Song W, Cui Y, Zhang Y, Mei S, Wang Q (2020) Calcium-siRNA nanocomplexes optimized by bovine serum albumin coating can achieve convenient and efficient siRNA Delivery for Periodontitis Therapy. Int J Nanomedicine 15:9241–9253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rivera-Perez JA, Mallo M, Gendron-Maguire M, Gridley T, Behringer RR (1995) Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121:3005–3012

    Article  CAS  PubMed  Google Scholar 

  75. Xiong Y, Wu S, Du Q, Wang A, Wang Z (2015) Integrated analysis of gene expression and genomic aberration data in osteosarcoma (OS). Cancer Gene Ther 22:524–529

    Article  CAS  PubMed  Google Scholar 

  76. Wang Z, Wang J, Li X, Xing L, Ding Y, Shi P, Zhang Y, Guo S, Shu X, Shan B (2014) Bortezomib prevents oncogenesis and bone metastasis of prostate cancer by inhibiting WWP1, Smurf1 and Smurf2. Int J Oncol 45:1469–1478

    Article  CAS  PubMed  Google Scholar 

  77. Lee YR, Chen M, Lee JD, Zhang J, Lin SY, Fu TM, Chen H, Ishikawa T, Chiang SY, Katon J, Zhang Y, Shulga YV, Bester AC, Fung J, Monteleone E, Wan L, Shen C, Hsu CH, Papa A, Clohessy JG, Teruya-Feldstein J, Jain S, Wu H, Matesic L, Chen RH, Wei W, Pandolfi PP (2019) Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 364:eaau0159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Colla S, Zhan F, Xiong W, Wu X, Xu H, Stephens O, Yaccoby S, Epstein J, Barlogie B, Shaughnessy JJ (2007) The oxidative stress response regulates DKK1 expression through the JNK signaling cascade in multiple myeloma plasma cells. Blood 109:4470–4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tung CH, Huang MF, Liang CH, Wu YY, Wu JE, Hsu CL, Chen YL, Hong TM (2022) alpha-Catulin promotes cancer stemness by antagonizing WWP1-mediated KLF5 degradation in lung cancer. Theranostics 12:1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma L, Chen X, Li C, Cheng R, Gao Z, Meng X, Sun C, Liang C, Liu Y (2019) miR-129-5p and -3p co-target WWP1 to suppress gastric cancer proliferation and migration. J Cell Biochem 120:7527–7538

    Article  PubMed  Google Scholar 

  81. Zhao C, Gu Y, Wang Y, Qin Q, Wang T, Huang M, Zhang H, Qu Y, Zhang J, Du Z, Jiang XX, Xu L (2021) miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration via repressing Dkk3. Stem Cells Int 2021:7435605

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang S, Banerjee S, Freitas A, Cui H, Xie N, Abraham E, Liu G (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302:L521–L529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zuo K, Li M, Zhang X, Lu C, Wang S, Zhi K, He B (2015) MiR-21 suppresses endothelial progenitor cell proliferation by activating the TGFβ signaling pathway via downregulation of WWP1. Int J Clin Exp Pathol 8:414–422

    PubMed  PubMed Central  Google Scholar 

  84. Sikora M, Smieszek A, Pielok A, Marycz K (2023) MiR-21-5p regulates the dynamic of mitochondria network and rejuvenates the senile phenotype of bone marrow stromal cells (BMSCs) isolated from osteoporotic SAM/P6 mice. Stem Cell Res Ther 14:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li D, Zhang J, Yin L, Jin Z, Chen X, Meng X (2021) Etomidate inhibits cell proliferation and induces apoptosis in A549 non-small cell lung cancer cells via downregulating WWP2. Exp Ther Med 22:1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mund T, Lewis MJ, Maslen S, Pelham HR (2014) Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc Natl Acad Sci U S A 111:16736–16741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Natural Science Foundation of China (82170984) and Zhejiang Provincial Natural Science Foundation of China under Grant NO.LQ24H140004.

Author information

Authors and Affiliations

Authors

Contributions

JS conceptualized the review, CW and CW performed the literature search, YW wrote the original draft, ZW reviewed and edited the manuscript, and SH and NW were responsible for supervision.

Corresponding author

Correspondence to Jiejun Shi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, Z., Wang, C. et al. The role of WWP1 and WWP2 in bone/cartilage development and diseases. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-023-04917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04917-7

Keywords

Navigation