Skip to main content

Advertisement

Log in

N6-methyladenosine-induced miR-182-5p promotes multiple myeloma tumorigenesis by regulating CAMK2N1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Methyltransferase like 3 (METTL3) has been reported to promote tumorigenesis of multiple myeloma (MM), however, the molecular mechanism still needs further research. The N6-methyladenosine (m6A) level in tissues or cells was measured by m6A kit and dot blot assay. The mRNA and protein expression were detected by quantitative real-time PCR (RT-qPCR) and Western blot, respectively. The cell counting kit-8 and colony formation assay were used to detect the cell proliferation. Coimmunoprecipitation (Co-IP) experiment verified the binding of two proteins. The luciferase reporter experiment demonstrated the targeted binding of miR-182-5p and CaMKII inhibitor 1 (CAMK2N1). More importantly, tumor growth was measured in xenograft mice. Our data showed that the expression of METTL3 was significantly increased in MM patients’ samples and MM cells. METTL3 overexpression promoted MM cells proliferation, and METTL3 knockdown inhibited MM cells proliferation. Mechanically, METTL3-dependent m6A participated in DiGeorge syndrome critical region 8 (DGCR8)-mediated maturation of pri-miR-182. Upregulation of miR-182-5p further enhanced the promoting proliferation effect of METTL3 overexpression on MM cells. Moreover, the luciferase reporter gene experiment proved that miR-182-5p targetedly regulated CAMK2N1 expression. Xenograft tumor in nude mice further verified that METTL3 promoted MM tumor growth through miR-182/CAMK2N1 signal axis. In summary, the METTL3/miR-182-5p/CAMK2N1 axis plays an important role in MM tumorigenesis, which may provide a new target for MM therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, Tuazon S, Gopal AK, Libby EN (2022) Diagnosis and management of multiple myeloma: a review. JAMA 327:464–477. https://doi.org/10.1001/jama.2022.0003

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Liu W, Mi L, Zeng X, Cai C, Ma J, Wang L (2019) Incidence and mortality of multiple myeloma in China, 2006–2016: an analysis of the Global Burden of Disease Study 2016. J Hematol Oncol 12:136. https://doi.org/10.1186/s13045-019-0807-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao WH, Wang BY, Chen LJ, Fu WJ, Xu J, Liu J, Jin SW, Chen YX, Cao XM, Yang Y, Zhang YL, Wang FX, Zhang PY, Lei B, Gu LF, Wang JL, Zhang H, Bai J, Xu Y, Zhu H, Du J, Jiang H, Fan XH, Li JY, Hou J, Chen Z, Zhang WG, Mi JQ, Chen SJ, He AL (2022) Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: a phase 1, single-arm, open-label, multicenter study in China (LEGEND-2). J Hematol Oncol 15:86. https://doi.org/10.1186/s13045-022-01301-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang H, Shi X, Huang T, Zhao X, Chen W, Gu N, Zhang R (2020) Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Res 48:6251–6264. https://doi.org/10.1093/nar/gkaa347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang Y, Chen K, Song B, Ma J, Wu X, Xu Q, Wei Z, Su J, Liu G, Rong R, Lu Z, de Magalhães JP, Rigden DJ, Meng J (2021) m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res 49:D134-d143. https://doi.org/10.1093/nar/gkaa692

    Article  CAS  PubMed  Google Scholar 

  6. Jiang F, Tang X, Tang C, Hua Z, Ke M, Wang C, Zhao J, Gao S, Jurczyszyn A, Janz S, Beksac M, Zhan F, Gu C, Yang Y (2021) HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol 14:54. https://doi.org/10.1186/s13045-021-01066-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song S, Fan G, Li Q, Su Q, Zhang X, Xue X, Wang Z, Qian C, Jin Z, Li B (2021) IDH2 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in multiple myeloma. Oncogene 40:5393–5402. https://doi.org/10.1038/s41388-021-01939-7

    Article  CAS  PubMed  Google Scholar 

  8. Xu A, Zhang J, Zuo L, Yan H, Chen L, Zhao F, Fan F, Xu J, Zhang B, Zhang Y, Yin X, Cheng Q, Gao S, Deng J, Mei H, Huang Z, Sun C, Hu Y (2022) FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m(6)A-YTHDF2-dependent manner. Mol Ther 30:1104–1118. https://doi.org/10.1016/j.ymthe.2021.12.012

    Article  CAS  PubMed  Google Scholar 

  9. Che F, Ye X, Wang Y, Wang X, Ma S, Tan Y, Mao Y, Luo Z (2022) METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and pri-microRNA-27 maturation in m(6)A-dependent manner. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09690-1

    Article  PubMed  Google Scholar 

  10. Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N, Fray RG, Soller M (2016) m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540:301–304. https://doi.org/10.1038/nature20577

    Article  CAS  PubMed  Google Scholar 

  11. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, Vågbø CB, Kusśnierczyk A, Klungland A, Darnell JE Jr, Darnell RB (2015) A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev 29:2037–2053. https://doi.org/10.1101/gad.269415.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lichinchi G, Gao S, Saletore Y, Gonzalez GM (2016) Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 1:16011. https://doi.org/10.1038/nmicrobiol.2016.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399. https://doi.org/10.1016/j.cell.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. https://doi.org/10.1038/nature12730

    Article  CAS  PubMed  Google Scholar 

  15. Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519:482–485. https://doi.org/10.1038/nature14281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308. https://doi.org/10.1016/j.cell.2015.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC, Mullen AC (2017) Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep 20:2262–2276. https://doi.org/10.1016/j.celrep.2017.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, Xi J, Ye D, Zhu S, Chen W, Jia W, Leng Y, Wan X, Kang J (2018) N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res 46:3906–3920. https://doi.org/10.1093/nar/gky130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao MQ, You AB, Zhu XD, Zhang W, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, Li KS, Gao DM, Ma DN, Ye BG, Wang CH, Qin CD, Sun HC, Zhang T, Tang ZY (2018) miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 11:12. https://doi.org/10.1186/s13045-018-0555-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu X, Wang W (2021) miR-182–5p serves as an oncogene in lung adenocarcinoma through binding to STARD13. Comput Math Meth Med 2021:7074343. https://doi.org/10.1155/2021/7074343

    Article  Google Scholar 

  21. Souza MF, Cólus IMS (2022) MiR-182–5p modulates prostate cancer aggressive phenotypes by targeting EMT associated pathways. Biomolecules. 12:187. https://doi.org/10.3390/biom12020187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du K, Zhang Z, Zeng Z, Tang J, Lee T, Sun T (2021) Distinct roles of Fto and Mettl3 in controlling development of the cerebral cortex through transcriptional and translational regulations. Cell Death Dis 12:700. https://doi.org/10.1038/s41419-021-03992-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang D, Wang X, Huang B, Zhao Y, Tu W, Jin X, Shao Y, Zhu Y, Lu G (2022) METTL3 promotes prostate cancer progression by regulating miR-182 maturation in m6A-dependent manner. Andrologia 54:1581–1591. https://doi.org/10.1111/and.14422

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Tian L, Li Z, Liu R, Yu J, Liu B (2022) CAMK2N1 has a cancer-suppressive function in colorectal carcinoma via effects on the Wnt/β-catenin pathway. Biochem Biophys Res Commun 626:220–228. https://doi.org/10.1016/j.bbrc.2022.08.036

    Article  CAS  PubMed  Google Scholar 

  25. Xu K, Hu X, Sun L, Liang Q, Ouyang G, Zhang Y, Mu Q, Yan X (2019) MicroRNA-532 exerts oncogenic functions in t(4;14) multiple myeloma by targeting CAMK2N1. Hum Cell 32:529–539. https://doi.org/10.1007/s13577-019-00276-y

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Zuo Y, Lv C, Zhou M, Wan Y (2023) N6-methyladenosine regulators are potential prognostic biomarkers for multiple myeloma. IUBMB Life 75:137–148. https://doi.org/10.1002/iub.2678

    Article  CAS  PubMed  Google Scholar 

  27. Zeng C, Huang W, Li Y, Weng H (2020) Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 13:117. https://doi.org/10.1186/s13045-020-00951-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang X, Yang Z, Li Y, Long X (2023) m6A methyltransferase METTL3 facilitates multiple myeloma cell growth through the m6A modification of BZW2. Ann Hematol 102:1801–1810. https://doi.org/10.1007/s00277-023-05283-6

    Article  CAS  PubMed  Google Scholar 

  29. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, Wei JF, Yang H (2019) METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 18:110. https://doi.org/10.1186/s12943-019-1036-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, Ji D, Wang Q, Zhang Z, Tang J, Sun Y (2019) Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res 38:393. https://doi.org/10.1186/s13046-019-1408-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, Liang X, Yang Y (2021) METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther 28:335–349. https://doi.org/10.1038/s41417-020-00222-3

    Article  CAS  PubMed  Google Scholar 

  32. Yao B, Zhu S, Wei X, Chen MK, Feng Y, Li Z, Xu X, Zhang Y, Wang Y, Zhou J, Tang N, Ji C, Jiang P, Zhao SC, Qin C, Feng N (2022) The circSPON2/miR-331-3p axis regulates PRMT5, an epigenetic regulator of CAMK2N1 transcription and prostate cancer progression. Mol Cancer 21:119. https://doi.org/10.1186/s12943-022-01598-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by Anhui Provincial Department of Education (2022AH051178), the Anhui Natural Science Foundation of China (2008085MH296), the Anhui Medical University Natural Science Foundation (2020xkj186).

Author information

Authors and Affiliations

Authors

Contributions

JB, TTX, WJW, HX and XWC collected clinical data. JB and TTX carried out the experiments and analyzed this data. The manuscript was written and interpreted by JB. Study design, experiments and manuscript review were handled by RXX. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Ruixiang Xia.

Ethics declarations

Ethics approval and consent to participate

For patients: This project was approved by the Research Ethics Committee of Anhui Medical University (No. 20200040). All participants in this project signed the informed consent form.

For animals: The animal experiments were carried out with the approval of the ethics committee of Anhui Medical University (No. 20190657).

Consent for publication

Not applicable.

Competing interests

All authors declare no competing interests.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Xu, T., Wang, W. et al. N6-methyladenosine-induced miR-182-5p promotes multiple myeloma tumorigenesis by regulating CAMK2N1. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-023-04906-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04906-w

Keywords

Navigation