Skip to main content
Log in

LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Burns JC (2018) History of the worldwide emergence of Kawasaki disease. Int J Rheum Dis 21(1):13–15. https://doi.org/10.1111/1756-185x.13214

    Article  PubMed  Google Scholar 

  2. Watts RA, Hatemi G, Burns JC, Mohammad AJ (2022) Global epidemiology of vasculitis. Nat Rev Rheumatol 18(1):22–34. https://doi.org/10.1038/s41584-021-00718-8

    Article  PubMed  Google Scholar 

  3. Skochko SM, Jain S, Sun X, Sivilay N, Kanegaye JT, Pancheri J et al (2018) Kawasaki disease outcomes and response to therapy in a multiethnic community: a 10-year experience. J Pediatr 203:408–15.e3. https://doi.org/10.1016/j.jpeds.2018.07.090

    Article  PubMed  Google Scholar 

  4. Huang YH, Lin KM, Ho SC, Yan JH, Lo MH, Kuo HC (2019) Increased incidence of Kawasaki disease in Taiwan in recent years: a 15 years nationwide population-based cohort study. Front Pediatr 7:121. https://doi.org/10.3389/fped.2019.00121

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim GB, Park S, Eun LY, Han JW, Lee SY, Yoon KL et al (2017) Epidemiology and clinical features of Kawasaki disease in South Korea, 2012–2014. Pediatr Infect Dis J 36(5):482–485. https://doi.org/10.1097/inf.0000000000001474

    Article  PubMed  Google Scholar 

  6. Matsubara Y, Matsubara D, Ae R, Kosami K, Aoyama Y, Yashiro M et al (2020) Cumulative incidence of Kawasaki disease with cardiac sequelae in Japan. Pediatr Int 62(4):444–450. https://doi.org/10.1111/ped.14164

    Article  PubMed  Google Scholar 

  7. Song Y, Huang X, Yu G, Qiao J, Cheng J, Wu J et al (2021) Pathogenesis of IgA vasculitis: an up-to-date review. Front Immunol 12:771619. https://doi.org/10.3389/fimmu.2021.771619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sapina M, Frkovic M, Sestan M, Srsen S, Ovuka A, Batnozic Varga M et al (2021) Geospatial clustering of childhood IgA vasculitis and IgA vasculitis-associated nephritis. Ann Rheum Dis 80(5):610–616. https://doi.org/10.1136/annrheumdis-2020-218649

    Article  CAS  PubMed  Google Scholar 

  9. Viner RM, Whittaker E (2020) Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet 395(10239):1741–1743. https://doi.org/10.1016/s0140-6736(20)31129-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoste L, Van Paemel R, Haerynck F (2021) Multisystem inflammatory syndrome in children related to COVID-19: a systematic review. Eur J Pediatr 180(7):2019–2034. https://doi.org/10.1007/s00431-021-03993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M et al (2017) Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 135(17):e927–e999. https://doi.org/10.1161/cir.0000000000000484

    Article  PubMed  Google Scholar 

  12. Ae R, Makino N, Kosami K, Kuwabara M, Matsubara Y, Nakamura Y (2020) Epidemiology, treatments, and cardiac complications in patients with Kawasaki disease: the nationwide survey in Japan, 2017–2018. J Pediatr 225:23–9.e2. https://doi.org/10.1016/j.jpeds.2020.05.034

    Article  PubMed  Google Scholar 

  13. Uehara R, Belay ED (2012) Epidemiology of Kawasaki disease in Asia, Europe, and the United States. J Epidemiol 22(2):79–85. https://doi.org/10.2188/jea.je20110131

    Article  PubMed  PubMed Central  Google Scholar 

  14. Friedman KG, Gauvreau K, Hamaoka-Okamoto A, Tang A, Berry E, Tremoulet AH et al (2016) Coronary artery aneurysms in Kawasaki disease: risk factors for progressive disease and adverse cardiac events in the US population. J Am Heart Assoc. https://doi.org/10.1161/jaha.116.003289

    Article  PubMed  PubMed Central  Google Scholar 

  15. Trnka P (2013) Henoch-Schönlein purpura in children. J Paediatr Child Health 49(12):995–1003. https://doi.org/10.1111/jpc.12403

    Article  PubMed  Google Scholar 

  16. Eleftheriou D, Dillon MJ, Tullus K, Marks SD, Pilkington CA, Roebuck DJ et al (2013) Systemic polyarteritis nodosa in the young: a single-center experience over thirty-two years. Arthritis Rheum 65(9):2476–2485. https://doi.org/10.1002/art.38024

    Article  CAS  PubMed  Google Scholar 

  17. Jauhola O, Ronkainen J, Koskimies O, Ala-Houhala M, Arikoski P, Holtta T et al (2010) Clinical course of extrarenal symptoms in Henoch-Schonlein purpura: a 6-month prospective study. Arch Dis Child 95(11):871–876. https://doi.org/10.1136/adc.2009.167874

    Article  PubMed  Google Scholar 

  18. Saulsbury FT (2007) Clinical update: Henoch-Schönlein purpura. The Lancet 369(9566):976–978. https://doi.org/10.1016/s0140-6736(07)60474-7

    Article  Google Scholar 

  19. Brogan PA (2007) What’s new in the aetiopathogenesis of vasculitis? Pediatr Nephrol 22(8):1083–1094. https://doi.org/10.1007/s00467-007-0450-1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Newburger JW, Taubert KA, Shulman ST, Rowley AH, Gewitz MH, Takahashi M et al (2003) Summary and abstracts of the Seventh International Kawasaki disease symposium: December 4–7, 2001, Hakone, Japan. Pediatr Res 53(1):153–157. https://doi.org/10.1203/00006450-200301000-00026

    Article  PubMed  Google Scholar 

  21. Rife E, Gedalia A (2020) Kawasaki disease: an update. Curr Rheumatol Rep 22(10):75. https://doi.org/10.1007/s11926-020-00941-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burns JC, Herzog L, Fabri O, Tremoulet AH, Rodó X, Uehara R et al (2013) Seasonality of Kawasaki disease: a global perspective. PLoS ONE 8(9):e74529. https://doi.org/10.1371/journal.pone.0074529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dominguez SR, Anderson MS, Glodé MP, Robinson CC, Holmes KV (2006) Blinded case-control study of the relationship between human coronavirus NL63 and Kawasaki syndrome. J Infect Dis 194(12):1697–1701. https://doi.org/10.1086/509509

    Article  PubMed  Google Scholar 

  24. Lehmann C, Klar R, Lindner J, Lindner P, Wolf H, Gerling S (2009) Kawasaki disease lacks association with human coronavirus NL63 and human bocavirus. Pediatr Infect Dis J 28(6):553–554. https://doi.org/10.1097/inf.0b013e31819f41b6

    Article  PubMed  Google Scholar 

  25. Shimizu C, Shike H, Baker SC, Garcia F, van der Hoek L, Kuijpers TW et al (2005) Human coronavirus NL63 is not detected in the respiratory tracts of children with acute Kawasaki disease. J Infect Dis 192(10):1767–1771. https://doi.org/10.1086/497170

    Article  PubMed  Google Scholar 

  26. Kabeerdoss J, Pilania RK, Karkhele R, Kumar TS, Danda D, Singh S (2021) Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management. Rheumatol Int 41(1):19–32. https://doi.org/10.1007/s00296-020-04749-4

    Article  CAS  PubMed  Google Scholar 

  27. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M et al (2020) An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395(10239):1771–1778. https://doi.org/10.1016/s0140-6736(20)31103-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pouletty M, Borocco C, Ouldali N, Caseris M, Basmaci R, Lachaume N et al (2020) Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis 79(8):999–1006. https://doi.org/10.1136/annrheumdis-2020-217960

    Article  CAS  PubMed  Google Scholar 

  29. Ouldali N, Pouletty M, Mariani P, Beyler C, Blachier A, Bonacorsi S et al (2020) Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a time-series analysis. Lancet Child Adolesc Health 4(9):662–668. https://doi.org/10.1016/s2352-4642(20)30175-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belot A, Antona D, Renolleau S, Javouhey E, Hentgen V, Angoulvant F et al (2020) SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020. Euro Surveill. https://doi.org/10.2807/1560-7917.Es.2020.25.22.2001010

    Article  PubMed  PubMed Central  Google Scholar 

  31. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF et al (2020) Multisystem inflammatory syndrome in US children and adolescents. N Engl J Med 383(4):334–346. https://doi.org/10.1056/NEJMoa2021680

    Article  CAS  PubMed  Google Scholar 

  32. Hoshino C (2009) Adult onset Schoenlein-Henoch purpura associated with helicobacter pylori Infection. Intern Med 48(10):847–851. https://doi.org/10.2169/internalmedicine.48.1718

    Article  PubMed  Google Scholar 

  33. Hu H (2021) Epidemiology and clinical characteristics of Henoch-Schönlein purpura associated with mycoplasma pneumoniae infection in 131 children in Hubei province, China. Mediterranean J Hematol Infect Dis. https://doi.org/10.4084/mjhid.2021.037

    Article  Google Scholar 

  34. Tullus K, Marks SD (2009) Vasculitis in children and adolescents. Pediatr Drugs 11(6):375–380. https://doi.org/10.2165/11316120-000000000-00000

    Article  Google Scholar 

  35. Saulsbury FT (1999) Henoch-Schönlein purpura in children: report of 100 patients and review of the literature. Medicine 78(6):395–409. https://doi.org/10.1097/00005792-199911000-00005

    Article  CAS  PubMed  Google Scholar 

  36. Pagnoux C, Cohen P, Guillevin L (2006) Vasculitides secondary to infections. Clin Exp Rheumatol 24(2 Suppl 41):S71-81

    CAS  PubMed  Google Scholar 

  37. Cheema GS, Roschke V, Hilbert DM, Stohl W (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44(6):1313–1319. https://doi.org/10.1002/1529-0131(200106)44:6%3c1313::Aid-art223%3e3.0.Co;2-s

    Article  CAS  PubMed  Google Scholar 

  38. De Vita S, Quartuccio L, Fabris M (2008) Hepatitis C virus infection, mixed cryoglobulinemia and BLyS upregulation: targeting the infectious trigger, the autoimmune response, or both? Autoimmun Rev 8(2):95–99. https://doi.org/10.1016/j.autrev.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  39. Sène D, Limal N, Ghillani-Dalbin P, Saadoun D, Piette JC, Cacoub P (2007) Hepatitis C virus-associated B-cell proliferation–the role of serum B lymphocyte stimulator (BLyS/BAFF). Rheumatology (Oxford) 46(1):65–69. https://doi.org/10.1093/rheumatology/kel177

    Article  PubMed  Google Scholar 

  40. Racanelli V, Sansonno D, Piccoli C, D’Amore FP, Tucci FA, Dammacco F (2001) Molecular characterization of B cell clonal expansions in the liver of chronically hepatitis C virus-infected patients. J Immunol 167(1):21–29. https://doi.org/10.4049/jimmunol.167.1.21

    Article  CAS  PubMed  Google Scholar 

  41. Matsubara K, Fukaya T, Miwa K, Shibayama N, Nigami H, Harigaya H et al (2006) Development of serum IgM antibodies against superantigens of Staphylococcus aureus and Streptococcus pyogenes in Kawasaki disease. Clin Exp Immunol 143(3):427–434. https://doi.org/10.1111/j.1365-2249.2006.03015.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Geetha D, Jefferson JA (2020) ANCA-associated vasculitis: core curriculum 2020. Am J Kidney Dis 75(1):124–137. https://doi.org/10.1053/j.ajkd.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  43. Lo MS, Newburger JW (2018) Role of intravenous immunoglobulin in the treatment of Kawasaki disease. Int J Rheum Dis 21(1):64–69. https://doi.org/10.1111/1756-185x.13220

    Article  CAS  PubMed  Google Scholar 

  44. Ahlers CG, Wang B, Howell DN, Choksi V (2023) Extensive palpable purpura preceding renal dysfunction in immunoglobulin a vasculitis due to coronavirus-19 infection. Am J Med 136(7):655–658. https://doi.org/10.1016/j.amjmed.2023.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neufeld M, Molyneux K, Pappelbaum KI, Mayer-Hain S, von Hodenberg C, Ehrchen J et al (2019) Galactose-deficient IgA1 in skin and serum from patients with skin-limited and systemic IgA vasculitis. J Am Acad Dermatol 81(5):1078–1085. https://doi.org/10.1016/j.jaad.2019.03.029

    Article  CAS  PubMed  Google Scholar 

  46. Fujita Y, Nakamura Y, Sakata K, Hara N, Kobayashi M, Nagai M et al (1989) Kawasaki disease in families. Pediatrics 84(4):666–669

    Article  CAS  PubMed  Google Scholar 

  47. Kottek A, Shimizu C, Burns JC (2011) Kawasaki disease in monozygotic twins. Pediatr Infect Dis J 30(12):1114–1116. https://doi.org/10.1097/INF.0b013e31822ac4ff

    Article  PubMed  PubMed Central  Google Scholar 

  48. Uehara R, Yashiro M, Nakamura Y, Yanagawa H (2003) Kawasaki disease in parents and children. Acta Paediatr 92(6):694–697. https://doi.org/10.1080/08035320310002768

    Article  CAS  PubMed  Google Scholar 

  49. Uehara R, Yashiro M, Nakamura Y, Yanagawa H (2004) Clinical features of patients with Kawasaki disease whose parents had the same disease. Arch Pediatr Adolesc Med 158(12):1166–1169. https://doi.org/10.1001/archpedi.158.12.1166

    Article  PubMed  Google Scholar 

  50. Dergun M, Kao A, Hauger SB, Newburger JW, Burns JC (2005) Familial occurrence of Kawasaki syndrome in North America. Arch Pediatr Adolesc Med 159(9):876–881. https://doi.org/10.1001/archpedi.159.9.876

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gershoni-Baruch R, Broza Y, Brik R (2003) Prevalence and significance of mutations in the familial Mediterranean fever gene in Henoch-Schönlein purpura. J Pediatr 143(5):658–661. https://doi.org/10.1067/s0022-3476(03)00502-x

    Article  CAS  PubMed  Google Scholar 

  52. Rueda B, Perez-Armengol C, Lopez-Lopez S, Garcia-Porrua C, Martín J, Gonzalez-Gay MA (2006) Association between functional haplotypes of vascular endothelial growth factor and renal complications in Henoch-Schönlein purpura. J Rheumatol 33(1):69–73

    CAS  PubMed  Google Scholar 

  53. Onouchi Y, Ozaki K, Buns JC, Shimizu C, Hamada H, Honda T et al (2010) Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum Mol Genet 19(14):2898–2906. https://doi.org/10.1093/hmg/ddq176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H et al (2012) A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 44(5):517–521. https://doi.org/10.1038/ng.2220

    Article  CAS  PubMed  Google Scholar 

  55. Yang F, Ao X, Ding L, Ye L, Zhang X, Yang L et al (2022) Non-coding RNAs in Kawasaki disease: molecular mechanisms and clinical implications. BioEssays 44(6):e2100256. https://doi.org/10.1002/bies.202100256

    Article  CAS  PubMed  Google Scholar 

  56. Sharma K, Vignesh P, Srivastava P, Sharma J, Chaudhary H, Mondal S et al (2021) Epigenetics in Kawasaki disease. Front Pediatr 9:673294. https://doi.org/10.3389/fped.2021.673294

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kawasaki T (1967) Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 16(3):178–222

    CAS  PubMed  Google Scholar 

  58. Rowley AH, Shulman ST (2018) The epidemiology and pathogenesis of Kawasaki disease. Front Pediatr 6:374. https://doi.org/10.3389/fped.2018.00374

    Article  PubMed  PubMed Central  Google Scholar 

  59. Takahashi K, Oharaseki T, Yokouchi Y (2011) Pathogenesis of Kawasaki disease. Clin Exp Immunol 164(Suppl 1):20–22. https://doi.org/10.1111/j.1365-2249.2011.04361.x

    Article  PubMed  PubMed Central  Google Scholar 

  60. Okabe M, Takarada S, Miyao N, Nakaoka H, Ibuki K, Ozawa S et al (2022) G0S2 regulates innate immunity in Kawasaki disease via lncRNA HSD11B1-AS1. Pediatr Res 92(2):378–387. https://doi.org/10.1038/s41390-022-01999-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo C, Hua Y, Qian Z (2021) Differentially expressed genes, lncRNAs, and competing endogenous RNAs in Kawasaki disease. PeerJ 9:e11169. https://doi.org/10.7717/peerj.11169

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G et al (2013) The vascular endothelium and human diseases. Int J Biol Sci 9(10):1057–1069. https://doi.org/10.7150/ijbs.7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang Y, Hu J, Liu J, Geng Z, Tao Y, Zheng F et al (2020) The role of Ca(2+)/NFAT in dysfunction and inflammation of human coronary endothelial cells induced by Sera from patients with Kawasaki disease. Sci Rep 10(1):4706. https://doi.org/10.1038/s41598-020-61667-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ueno K, Ninomiya Y, Hazeki D, Masuda K, Nomura Y, Kawano Y (2017) Disruption of endothelial cell homeostasis plays a key role in the early pathogenesis of coronary artery abnormalities in Kawasaki disease. Sci Rep 7:43719. https://doi.org/10.1038/srep43719

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xu M, Qi Q, Men L, Wang S, Li M, Xiao M et al (2020) Berberine protects Kawasaki disease-induced human coronary artery endothelial cells dysfunction by inhibiting of oxidative and endoplasmic reticulum stress. Vascul Pharmacol 127:106660. https://doi.org/10.1016/j.vph.2020.106660

    Article  CAS  PubMed  Google Scholar 

  66. Jia C, Zhang J, Chen H, Zhuge Y, Chen H, Qian F et al (2019) Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathespin B signaling pathway and NLRP3 inflammasome activation. Cell Death Dis 10(10):778. https://doi.org/10.1038/s41419-019-2021-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He M, Chen Z, Martin M, Zhang J, Sangwung P, Woo B et al (2017) miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition: therapeutic implications in Kawasaki disease. Circ Res 120(2):354–365. https://doi.org/10.1161/circresaha.116.310233

    Article  CAS  PubMed  Google Scholar 

  68. Jiang C, Fang X, Jiang Y, Shen F, Hu Z, Li X et al (2016) TNF-α induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. Int J Biochem Cell Biol 72:118–124. https://doi.org/10.1016/j.biocel.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  69. Zhao J, Chen D (2022) Kawasaki disease: SOCS2-AS1/miR-324-5p/CUEDC2 axis regulates the progression of human umbilical vein endothelial cells. Pediatr Res 92(2):388–395. https://doi.org/10.1038/s41390-020-1029-9

    Article  CAS  PubMed  Google Scholar 

  70. Hao J, Zhang Y, Pan X, Wang H, Li B, You D (2022) Kawasaki disease: lncRNA Slco4a1 regulates the progression of human umbilical vein endothelial cells by targeting the miR-335-5p/POU5F1 axis. Transl Pediatr 11(2):183–193. https://doi.org/10.21037/tp-22-7

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES et al (2013) Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503(7476):360–364. https://doi.org/10.1038/nature12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoang LT, Shimizu C, Ling L, Naim AN, Khor CC, Tremoulet AH et al (2014) Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med 6(11):541. https://doi.org/10.1186/s13073-014-0102-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang L, Yang HW, Lin TY, Yang KD (2021) Perspective of immunopathogenesis and immunotherapies for Kawasaki disease. Front Pediatr 9:697632. https://doi.org/10.3389/fped.2021.697632

    Article  PubMed  PubMed Central  Google Scholar 

  74. Noval Rivas M, Lee Y, Wakita D, Chiba N, Dagvadorj J, Shimada K et al (2017) CD8+ T cells contribute to the development of coronary arteritis in the Lactobacillus casei cell wall extract-induced murine model of Kawasaki disease. Arthritis Rheumatol 69(2):410–421. https://doi.org/10.1002/art.39939

    Article  CAS  PubMed  Google Scholar 

  75. Ye Q, Gong FQ, Shang SQ, Hu J (2016) Intravenous immunoglobulin treatment responsiveness depends on the degree of CD8+ T cell activation in Kawasaki disease. Clin Immunol 171:25–31. https://doi.org/10.1016/j.clim.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  76. Wang Z, Xie L, Ding G, Song S, Chen L, Li G et al (2021) Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nat Commun 12(1):5444. https://doi.org/10.1038/s41467-021-25771-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ko TM, Chang JS, Chen SP, Liu YM, Chang CJ, Tsai FJ et al (2019) Genome-wide transcriptome analysis to further understand neutrophil activation and lncRNA transcript profiles in Kawasaki disease. Sci Rep 9(1):328. https://doi.org/10.1038/s41598-018-36520-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rowley AH (2011) Kawasaki disease: novel insights into etiology and genetic susceptibility. Annu Rev Med 62:69–77. https://doi.org/10.1146/annurev-med-042409-151944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guo K, Qiu L, Xu Y, Gu X, Zhang L, Lin K et al (2021) Single-nucleotide polymorphism LncRNA AC008392.1/rs7248320 in CARD8 is associated with Kawasaki disease susceptibility in the Han Chinese population. J Inflamm Res 14:4809–4816. https://doi.org/10.2147/jir.S331727

    Article  PubMed  PubMed Central  Google Scholar 

  80. Teng MC, Wang LC, Yu HH, Lee JH, Yang YH, Chiang BL (2012) Kawasaki disease and Henoch-Schönlein purpura—10 years’ experience of childhood vasculitis at a university hospital in Taiwan. J Microbiol Immunol Infect 45(1):22–30. https://doi.org/10.1016/j.jmii.2011.09.024

    Article  CAS  PubMed  Google Scholar 

  81. Jiang M, Dai J, Yin M, Jiang C, Ren M, Tian L (2021) LncRNA MEG8 sponging miR-181a-5p contributes to M1 macrophage polarization by regulating SHP2 expression in Henoch-Schonlein purpura rats. Ann Med 53(1):1576–1588. https://doi.org/10.1080/07853890.2021.1969033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang L, Li Y, Wang P, Xie Y, Liu F, Mao J et al (2022) Integrated analysis of immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network in children with Henoch Schönlein purpura nephritis. Transl Pediatr 11(10):1682–1696. https://doi.org/10.21037/tp-22-437

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Cancer Res 77(15):3965–3981. https://doi.org/10.1158/0008-5472.Can-16-2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang YH, Yu HH, Chiang BL (2014) The diagnosis and classification of Henoch-Schönlein purpura: an updated review. Autoimmun Rev 13(4–5):355–358. https://doi.org/10.1016/j.autrev.2014.01.031

    Article  PubMed  Google Scholar 

  85. Zhou Q, Chen J, Wu D, Yan H, Liu F, Xi Y et al (2021) Differential expression of long non-coding RNAs SRA, HCG22 and MHRT in children with Kawasaki disease. Exp Ther Med 22(3):1022. https://doi.org/10.3892/etm.2021.10454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xie Y, Shi H, Han B (2023) Bioinformatic analysis of underlying mechanisms of Kawasaki disease via weighted gene correlation network analysis (WGCNA) and the least absolute shrinkage and selection operator method (LASSO) regression model. BMC Pediatr 23(1):90. https://doi.org/10.1186/s12887-023-03896-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xiong Y, Xu J, Zhang D, Wu S, Li Z, Zhang J et al (2022) MicroRNAs in Kawasaki disease: an update on diagnosis, therapy and monitoring. Front Immunol 13:1016575. https://doi.org/10.3389/fimmu.2022.1016575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ho LGY, Curtis N (2017) What dose of aspirin should be used in the initial treatment of Kawasaki disease? Arch Dis Child 102(12):1180–1182. https://doi.org/10.1136/archdischild-2017-313538

    Article  PubMed  Google Scholar 

  89. Nakada T (2015) Effects of anti-inflammatory drugs on intravenous immunoglobulin therapy in the acute phase of Kawasaki disease. Pediatr Cardiol 36(2):335–339. https://doi.org/10.1007/s00246-014-1010-7

    Article  PubMed  Google Scholar 

  90. Kuo HC, Lo MH, Hsieh KS, Guo MM, Huang YH (2015) High-dose aspirin is associated with anemia and does not confer benefit to disease outcomes in Kawasaki disease. PLoS ONE 10(12):e0144603. https://doi.org/10.1371/journal.pone.0144603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alipour S, Khalighfard S, Khori V, Amiriani T, Tajaldini M, Dehghan M et al (2022) Innovative targets of the lncRNA-miR-mRNA network in response to low-dose aspirin in breast cancer patients. Sci Rep 12(1):12054. https://doi.org/10.1038/s41598-022-16398-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen M, Wu L, Zhan H, Liu T, He Y (2021) Aspirin-induced long non-coding RNA suppresses colon cancer growth. Transl Cancer Res 10(5):2055–2069. https://doi.org/10.21037/tcr-20-2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo H, Liu J, Ben Q, Qu Y, Li M, Wang Y et al (2016) The aspirin-induced long non-coding RNA OLA1P2 blocks phosphorylated STAT3 homodimer formation. Genome Biol 17:24. https://doi.org/10.1186/s13059-016-0892-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun Y, Liu R, Xia X, Xing L, Jiang J, Bian W et al (2022) Large-scale profiling on lncRNAs in human platelets: correlation with platelet reactivity. Cells 11(14):2256. https://doi.org/10.3390/cells11142256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tay SH, Santosa A, Goh ECH, Xu CX, Wu LH, Bigliardi-Qi M et al (2022) Distinct transcriptomic and metabolomic profiles characterize NSAID-induced urticaria/angioedema patients undergoing aspirin desensitization. J Allergy Clin Immunol 150(6):1486–1497. https://doi.org/10.1016/j.jaci.2022.07.025

    Article  CAS  PubMed  Google Scholar 

  96. Zhang RL, Lo HH, Lei C, Ip N, Chen J, Law BY (2020) Current pharmacological intervention and development of targeting IVIG resistance in Kawasaki disease. Curr Opin Pharmacol 54:72–81. https://doi.org/10.1016/j.coph.2020.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Broderick C, Kobayashi S, Suto M, Ito S, Kobayashi T (2023) Intravenous immunoglobulin for the treatment of Kawasaki disease. Cochrane Database Syst Rev 1(1):Cd014884. https://doi.org/10.1002/14651858.CD014884.pub2

    Article  PubMed  Google Scholar 

  98. Eleftheriou D, Moraes YC, Purvis C, Pursell M, Morillas MM, Kahn R et al (2023) Multi-centre, randomised, open-label, blinded endpoint assessed, trial of corticosteroids plus intravenous immunoglobulin (IVIG) and aspirin, versus IVIG and aspirin for prevention of coronary artery aneurysms (CAA) in Kawasaki disease (KD): the KD CAA prevention (KD-CAAP) trial protocol. Trials 24(1):60. https://doi.org/10.1186/s13063-022-07051-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Amano Y, Akazawa Y, Yasuda J, Yoshino K, Kojima K, Kobayashi N et al (2019) A low-frequency IL4R locus variant in Japanese patients with intravenous immunoglobulin therapy-unresponsive Kawasaki disease. Pediatr Rheumatol Online J 17(1):34. https://doi.org/10.1186/s12969-019-0337-2

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang Z, Xu Y, Zhou H, Wang Y, Li W, Lu Z et al (2020) Association between P2RY12 gene polymorphisms and IVIG resistance in Kawasaki patients. Cardiovasc Ther 2020:3568608. https://doi.org/10.1155/2020/3568608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ahn JG, Bae Y, Shin D, Nam J, Kim KY, Kim DS (2019) HMGB1 gene polymorphism is associated with coronary artery lesions and intravenous immunoglobulin resistance in Kawasaki disease. Rheumatology (Oxford) 58(5):770–775. https://doi.org/10.1093/rheumatology/key356

    Article  CAS  PubMed  Google Scholar 

  102. Qin Y, Li L, Luo E, Hou J, Yan G, Wang D et al (2020) Role of m6A RNA methylation in cardiovascular disease (review). Int J Mol Med 46(6):1958–1972. https://doi.org/10.3892/ijmm.2020.4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Green J, Wardle AJ, Tulloh RM (2022) Corticosteroids for the treatment of Kawasaki disease in children. Cochrane Database Syst Rev 5(5):Cd011188. https://doi.org/10.1002/14651858.CD011188.pub3

    Article  PubMed  Google Scholar 

  104. Chang LS, Kuo HC (2020) The role of corticosteroids in the treatment of Kawasaki disease. Expert Rev Anti Infect Ther 18(2):155–164. https://doi.org/10.1080/14787210.2020.1713752

    Article  CAS  PubMed  Google Scholar 

  105. Ozen S, Marks SD, Brogan P, Groot N, de Graeff N, Avcin T et al (2019) European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis-the SHARE initiative. Rheumatology (Oxford) 58(9):1607–1616. https://doi.org/10.1093/rheumatology/kez041

    Article  CAS  PubMed  Google Scholar 

  106. Lucafò M, Stankovic B, Kotur N, Di Silvestre A, Martelossi S, Ventura A et al (2018) Pharmacotranscriptomic biomarkers in glucocorticoid treatment of pediatric inflammatory bowel disease. Curr Med Chem 25(24):2855–2871. https://doi.org/10.2174/0929867324666170920145337

    Article  CAS  PubMed  Google Scholar 

  107. Syed AP, Greulich F, Ansari SA, Uhlenhaut NH (2020) Anti-inflammatory glucocorticoid action: genomic insights and emerging concepts. Curr Opin Pharmacol 53:35–44. https://doi.org/10.1016/j.coph.2020.03.003

    Article  CAS  PubMed  Google Scholar 

  108. Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH (2022) How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 596(20):2596–2616. https://doi.org/10.1002/1873-3468.14409

    Article  CAS  PubMed  Google Scholar 

  109. Zhu H, Li J, Li Y, Zheng Z, Guan H, Wang H et al (2021) Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. Sci Adv. https://doi.org/10.1126/sciadv.abd9923

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li G, Li B, Li B, Zhao J, Wang X, Luo R et al (2021) The role of biomechanical forces and MALAT1/miR-329-5p/PRIP signalling on glucocorticoid-induced osteonecrosis of the femoral head. J Cell Mol Med 25(11):5164–5176. https://doi.org/10.1111/jcmm.16510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu JH, Li C, Zhang CH, Zhang ZH (2020) LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology 26(1):18–26. https://doi.org/10.1016/j.pulmoe.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  112. Pei X, Wen Y, Cui F, Yang Z, Xie Z (2021) lncRNA CASC7 regulates pathological progression of ox-LDL-stimulated atherosclerotic cell models via sponging miR-21 and regulating PI3K/Akt and TLR4/NF-κB signaling pathways. Aging (Albany, NY) 13(23):25408–25425. https://doi.org/10.18632/aging.203757

    Article  CAS  PubMed  Google Scholar 

  113. Su Y, Chen X, Zhou H, Shaw S, Chen J, Isales CM et al (2022) Expression of long noncoding RNA Xist is induced by glucocorticoids. Front Endocrinol (Lausanne) 13:1005944. https://doi.org/10.3389/fendo.2022.1005944

    Article  PubMed  Google Scholar 

  114. Mirzadeh Azad F, Malakootian M, Mowla SJ (2019) lncRNA PSORS1C3 is regulated by glucocorticoids and fine-tunes OCT4 expression in non-pluripotent cells. Sci Rep 9(1):8370. https://doi.org/10.1038/s41598-019-44827-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bordea MA, Costache C, Grama A, Florian AI, Lupan I, Samasca G et al (2022) Cytokine cascade in Kawasaki disease versus Kawasaki-like syndrome. Physiol Res 71(1):17–27. https://doi.org/10.33549/physiolres.934672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamaji N, da Silva LK, Shoda T, Ishitsuka K, Kobayashi T, Ota E et al (2019) TNF-α blockers for the treatment of Kawasaki disease in children. Cochrane Database Syst Rev 8(8):Cd012448. https://doi.org/10.1002/14651858.CD012448.pub2

    Article  PubMed  Google Scholar 

  117. Li L, Aviña-Zubieta JA, Bernstein CN, Kaplan GG, Tremlett H, Xie H et al (2023) Risk of multiple sclerosis among users of antitumor necrosis factor α in 4 Canadian Provinces: a population-based study. Neurology 100(6):e558–e567. https://doi.org/10.1212/wnl.0000000000201472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C et al (2014) The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci USA 111(3):1002–1007. https://doi.org/10.1073/pnas.1313768111

    Article  CAS  PubMed  Google Scholar 

  119. Song X, Gao F, Li H, Qin W, Chai C, Shi G et al (2023) Long noncoding RNA THRIL promotes foam cell formation and inflammation in macrophages. Cell Biol Int 47(1):156–166. https://doi.org/10.1002/cbin.11934

    Article  CAS  PubMed  Google Scholar 

  120. Zhou H, Simion V, Pierce JB, Haemmig S, Chen AF, Feinberg MW (2021) LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4. Faseb j 35(1):e21133. https://doi.org/10.1096/fj.202001654RR

    Article  CAS  PubMed  Google Scholar 

  121. Suzuki C, Yahata T, Okamoto-Hamaoka A, Fujii M, Yoshioka A, Niwa Y et al (2013) Utility of whole-blood aggregometry for evaluating anti-platelet therapy for Kawasaki disease. Pediatr Int 55(5):550–554. https://doi.org/10.1111/ped.12120

    Article  CAS  PubMed  Google Scholar 

  122. Berthelot JM, Drouet L, Lioté F (2020) Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway? Emerg Microbes Infect 9(1):1514–1522. https://doi.org/10.1080/22221751.2020.1785336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Malekzadeh I, Ziaee V, Sadrosadat T, Moardinejad MH, Sayadpour-Zanjani K (2015) Kawasaki disease and peripheral gangrene in infancy. Iran J Pediatr 25(6):e3309. https://doi.org/10.5812/ijp.3309

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shi X, Li WC, Mo LJ, Li XH, Luo YZ, Qin LQ et al (2018) Altered mean platelet volume in children with Henoch-Schonlein purpura and its association with disease activity. Ann Clin Biochem 55(3):368–372. https://doi.org/10.1177/0004563217727015

    Article  PubMed  Google Scholar 

  125. Ishiguro H, Hashimoto T, Akata M, Suzuki S, Azushima K, Kobayashi Y et al (2013) Rituximab treatment for adult purpura nephritis with nephrotic syndrome. Intern Med 52(10):1079–1083. https://doi.org/10.2169/internalmedicine.52.9325

    Article  PubMed  Google Scholar 

  126. van Stijn D, Schoenmaker NJ, Planken RN, Koolbergen DR, Gouw SC, Kuijpers TW et al (2022) Myocardial infarction due to thrombotic occlusion despite anticoagulation in Kawasaki disease—a case report. BMC Pediatr 22(1):85. https://doi.org/10.1186/s12887-022-03151-2

    Article  PubMed  PubMed Central  Google Scholar 

  127. Neu CT, Gutschner T, Haemmerle M (2020) Post-transcriptional expression control in platelet biogenesis and function. Int J Mol Sci 21(20):7614. https://doi.org/10.3390/ijms21207614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yan S, Liu X, Ke X, Xian Z, Peng C, Wang X et al (2020) Screening on platelet LncRNA expression profile discloses novel residual platelet reactivity biomarker. Int J Lab Hematol 42(5):661–668. https://doi.org/10.1111/ijlh.13261

    Article  PubMed  Google Scholar 

  129. Lazar S, Goldfinger LE (2021) Platelets and extracellular vesicles and their cross talk with cancer. Blood 137(23):3192–3200. https://doi.org/10.1182/blood.2019004119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Morchikh M, Cribier A, Raffel R, Amraoui S, Cau J, Severac D et al (2017) HEXIM1 and NEAT1 long non-coding RNA form a multi-subunit complex that regulates DNA-mediated innate immune response. Mol Cell 67(3):387–99.e5. https://doi.org/10.1016/j.molcel.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  131. Newburger JW (2017) Kawasaki disease: medical therapies. Congenit Heart Dis 12(5):641–643. https://doi.org/10.1111/chd.12502

    Article  PubMed  Google Scholar 

  132. Furuta S, Nakagomi D, Kobayashi Y, Hiraguri M, Sugiyama T, Amano K et al (2021) Effect of reduced-dose vs high-dose glucocorticoids added to rituximab on remission induction in ANCA-associated vasculitis: a randomized clinical trial. JAMA 325(21):2178–2187. https://doi.org/10.1001/jama.2021.6615

    Article  CAS  PubMed  Google Scholar 

  133. Halyabar O, Friedman KG, Sundel RP, Baker AL, Chang MH, Gould PW et al (2021) Cyclophosphamide use in treatment of refractory Kawasaki disease with coronary artery aneurysms. Pediatr Rheumatol Online J 19(1):31. https://doi.org/10.1186/s12969-021-00526-0

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hahn D, Hodson EM, Craig JC (2023) Interventions for preventing and treating kidney disease in IgA vasculitis. Cochrane Database Syst Rev 2(2):Cd005128. https://doi.org/10.1002/14651858.CD005128.pub4

    Article  PubMed  Google Scholar 

  135. McDonald GB, Slattery JT, Bouvier ME, Ren S, Batchelder AL, Kalhorn TF et al (2003) Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 101(5):2043–2048. https://doi.org/10.1182/blood-2002-06-1860

    Article  CAS  PubMed  Google Scholar 

  136. Tunnicliffe DJ, Palmer SC, Henderson L, Masson P, Craig JC, Tong A et al (2018) Immunosuppressive treatment for proliferative lupus nephritis. Cochrane Database Syst Rev 6(6):Cd002922. https://doi.org/10.1002/14651858.CD002922.pub4

    Article  PubMed  Google Scholar 

  137. Vitolo U, Chiappella A, Ferreri AJ, Martelli M, Baldi I, Balzarotti M et al (2011) First-line treatment for primary testicular diffuse large B-cell lymphoma with rituximab-CHOP, CNS prophylaxis, and contralateral testis irradiation: final results of an international phase II trial. J Clin Oncol 29(20):2766–2772. https://doi.org/10.1200/jco.2010.31.4187

    Article  CAS  PubMed  Google Scholar 

  138. Di Emidio G, D’Aurora M, Placidi M, Franchi S, Rossi G, Stuppia L et al (2019) Pre-conceptional maternal exposure to cyclophosphamide results in modifications of DNA methylation in F1 and F2 mouse oocytes: evidence for transgenerational effects. Epigenetics 14(11):1057–1064. https://doi.org/10.1080/15592294.2019.1631111

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yang Y, Wang Z, Xu Y, Liu X, Sun Y, Li W (2022) Knockdown of lncRNA H19 alleviates ox-LDL-induced HCAECs inflammation and injury by mediating miR-20a-5p/HDAC4 axis. Inflamm Res 71(9):1109–1121. https://doi.org/10.1007/s00011-022-01604-z

    Article  CAS  PubMed  Google Scholar 

  140. Salama RM, Abd Elwahab AH, Abd-Elgalil MM, Elmongy NF, Schaalan MF (2020) LCZ696 (sacubitril/valsartan) protects against cyclophosphamide-induced testicular toxicity in rats: Role of neprilysin inhibition and lncRNA TUG1 in ameliorating apoptosis. Toxicology 437:152439. https://doi.org/10.1016/j.tox.2020.152439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The figures were created with BioRender software (BioRender.com).

Funding

This work was supported by the Natural Science Foundation of Jiangxi Province, China (20202BABL206024).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design, JL; writing—original draft preparation, KY, JT and HL; writing—review and editing, KY, JD and HZ; project administration, JL; funding acquisition, JL. Manuscript revision: KY and JL; All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kangping Yang or Jinghua Luo.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Tang, J., Li, H. et al. LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04832-x

Keywords

Navigation