Skip to main content
Log in

Gluten worsens non-alcoholic fatty liver disease by affecting lipogenesis and fatty acid oxidation in diet-induced obese apolipoprotein E-deficient mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Obesity is closely associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation and hepatocyte injury. Preclinical studies have shown exacerbated weight gain associated with an obesogenic gluten-containing diet. However, whether gluten affects obesity-induced hepatic lipid accumulation still remains unclear. We hypothesized that gluten intake could affect fatty liver development in high-fat diet (HFD)-induced obese mice. Thus, we aimed to investigate the impact of gluten intake on NAFLD in HFD-induced obese mice. Male apolipoprotein E-deficient (Apoe-/-) mice were fed with a HFD containing (GD) or not (GFD) vital wheat gluten (4.5%) for 10 weeks. Blood and liver were collected for further analysis. We found that gluten exacerbated weight gain, hepatic fat deposition, and hyperglycemia without affecting the serum lipid profile. Livers of the GD group showed a larger area of fibrosis, associated with the expression of collagen and MMP9, and higher expression of apoptosis-related factors, p53, p21, and caspase-3. The expression of lipogenic factors, such as PPARγ and Acc1, was more elevated and factors related to beta-oxidation, such as PPARα and Cpt1, were lower in the GD group compared to the GFD. Further, gluten intake induced a more significant expression of Cd36, suggesting higher uptake of free fatty acids. Finally, we found lower protein expression of PGC1α followed by lower activation of AMPK. Our data show that gluten-containing high-fat diet exacerbated NAFLD by affecting lipogenesis and fatty acid oxidation in obese Apoe-/- mice through a mechanism involving lower activation of AMPK.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K et al (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the american association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology 55:2005–2023. https://doi.org/10.1002/hep.25762

    Article  PubMed  Google Scholar 

  2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2015) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence incidence and outcomes. Hepatology. https://doi.org/10.1002/hep.28431/suppinfo

    Article  PubMed  Google Scholar 

  3. Wójcik-Cichy K, Koślińska-Berkan E, Piekarska A (2018) The influence of NAFLD on the risk of atherosclerosis and cardiovascular diseases. Clin Exp Hepatol 4:1. https://doi.org/10.5114/CEH.2018.73155

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ekstedt M, Hagström H, Nasr P, Fredrikson M, Stål P, Kechagias S et al (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61:1547–1554. https://doi.org/10.1002/HEP.27368

    Article  CAS  PubMed  Google Scholar 

  5. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC et al (2016) Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. https://doi.org/10.1136/bmj.i2716

    Article  PubMed  PubMed Central  Google Scholar 

  6. Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B (2013) Ultra-processed products are becoming dominant in the global food system. Obes Rev 14(Suppl 2):21–28. https://doi.org/10.1111/OBR.12107

    Article  PubMed  Google Scholar 

  7. Na W, Lee Y, Kim H, Kim YS, Sohn C (2021) High-fat foods and fodmaps containing gluten foods primarily contribute to symptoms of irritable bowel syndrome in Korean adults. Nutrients. https://doi.org/10.3390/NU13041308/S1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ontiveros N, Rodríguez-Bellegarrigue C, Galicia-Rodríguez G, Vergara-Jiménez M, Zepeda-Gómez E, Arámburo-Galvez J, Gracia-Valenzuela M, Cabrera-Chávez F et al (2018) Prevalence of self-reported gluten-related disorders and adherence to a gluten-free diet in salvadoran adult population. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15040786

    Article  PubMed  PubMed Central  Google Scholar 

  9. Littlejohns TJ, Chong AY, Allen NE, Arnold M, Bradbury KE, Mentzer AJ et al (2021) Genetic, lifestyle, and health-related characteristics of adults without celiac disease who follow a gluten-free diet: a population-based study of 124,447 participants. Am J Clin Nutr 113:622–629. https://doi.org/10.1093/ajcn/nqaa291

    Article  PubMed  Google Scholar 

  10. Dall M, Calloe K, Haupt-Jorgensen M, Larsen J, Schmitt N, Josefsen K et al (2013) Gliadin fragments and a specific gliadin 33-mer peptide close KATP channels and induce insulin secretion in INS-1E cells and rat islets of langerhans. PLoS One 8:e66474. https://doi.org/10.1371/JOURNAL.PONE.0066474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175. https://doi.org/10.1152/physrev.00003.2008

    Article  CAS  PubMed  Google Scholar 

  12. Hafström I, Ringertz B, Spångberg a, von Zweigbergk L, Brannemark S, Nylander I, et al (2001) A vegan diet free of gluten improves the signs and symptoms of rheumatoid arthritis: the effects on arthritis correlate with a reduction in antibodies to food antigens. Rheumatology (Oxford) 40:1175–9. https://doi.org/10.1093/rheumatology/40.10.1175

    Article  PubMed  Google Scholar 

  13. Menta PLR, Andrade MER, Leocádio PCL, Fraga JR, Dias MTS, Cara DC et al (2019) Wheat gluten intake increases the severity of experimental colitis and bacterial translocation by weakening of the proteins of the junctional complex. Br J Nutr 121:361–373. https://doi.org/10.1017/S0007114518003422

    Article  CAS  PubMed  Google Scholar 

  14. Shimada S, Tanigawa T, Watanabe T, Nakata A, Sugimura N, Itani S et al (2019) Involvement of gliadin, a component of wheat gluten, in increased intestinal permeability leading to non-steroidal anti-inflammatory drug-induced small-intestinal damage. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0211436

    Article  PubMed  PubMed Central  Google Scholar 

  15. Biesiekierski JR, Newnham ED, Irving PM, Barrett JS, Haines M, Doecke JD et al (2011) Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am J Gastroenterol 106:508–514. https://doi.org/10.1038/AJG.2010.487

    Article  CAS  PubMed  Google Scholar 

  16. Hansen CHF, Krych Ł, Buschard K, Metzdorff SB, Nellemann C, Hansen LH et al (2014) A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD Mice. Diabetes 63:2821–2832. https://doi.org/10.2337/db13-1612

    Article  CAS  PubMed  Google Scholar 

  17. Marietta EV, Gomez AM, Yeoman C, Tilahun AY, Clark CR, Luckey DH et al (2013) Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0078687

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freire RH, Fernandes LR, Silva RB, Coelho BSL, De Araújo LPT, Ribeiro LS et al (2016) Wheat gluten intake increases weight gain and adiposity associated with reduced thermogenesis and energy expenditure in an animal model of obesity. Int J Obes 40:479–486. https://doi.org/10.1038/ijo.2015.204

    Article  CAS  Google Scholar 

  19. Soares FLP, de Oliveira MR, Teixeira LG, Menezes Z, Pereira SS, Alves AC et al (2013) Gluten-free diet reduces adiposity, inflammation and insulin resistance associated with the induction of PPAR-alpha and PPAR-gamma expression. J Nutr Biochem 24:1105–1111. https://doi.org/10.1016/j.jnutbio.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  20. Haupt-Jorgensen M, Buschard K, Hansen AK, Josefsen K, Antvorskov JC (2016) Gluten-free diet increases beta-cell volume and improves glucose tolerance in an animal model of type 2 diabetes. Diabetes Metab Res Rev 32:675–684. https://doi.org/10.1002/DMRR.2802

    Article  CAS  PubMed  Google Scholar 

  21. Aguilar EC, Navia-Pelaez JM, Fernandes-Braga W, Soares FLP, dos Santos LC, Leonel AJ et al (2020) Gluten exacerbates atherosclerotic plaque formation in ApoE -/- mice with diet-induced obesity. Nutrition. https://doi.org/10.1016/J.NUT.2019.110658

    Article  PubMed  Google Scholar 

  22. Aguilar EC, Fernandes-Braga W, Leocádio PCL, Campos GP, Lemos VS, de Oliveira RP et al (2023) Dietary gluten worsens hepatic steatosis by increasing inflammation and oxidative stress in ApoE−/− mice fed a high-fat diet. Food Funct 14:3332–3347. https://doi.org/10.1039/D3FO00149K

    Article  CAS  PubMed  Google Scholar 

  23. Lu W, Mei J, Yang J, Wu Z, Liu J, Miao P et al (2020) ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy. Life Sci 252:117601. https://doi.org/10.1016/j.lfs.2020.117601

    Article  CAS  PubMed  Google Scholar 

  24. Eng J (2003) Sample size estimation: how many individuals should be studied? Radiology 227:309–13. https://doi.org/10.1148/RADIOL.2272012051

    Article  PubMed  Google Scholar 

  25. Folch J, Lees M, Stanley GHS (1956) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/METH.2001.1262

    Article  CAS  PubMed  Google Scholar 

  27. Capettini LSA, Cortes SF, Silva JF, Alvarez-Leite JI, Lemos VS (2011) Decreased production of neuronal NOS-derived hydrogen peroxide contributes to endothelial dysfunction in atherosclerosis. Br J Pharmacol 164:1738. https://doi.org/10.1111/J.1476-5381.2011.01500.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu X, Beeton C (2010) Detection of functional matrix metalloproteinases by zymography. J Vis Exp. https://doi.org/10.3791/2445

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kurzepa J, Agnieszka M, Czechowska G, Kurzepa J, Celiński K, Kazmierak W et al (2014) Role of MMP-2 and MMP-9 and their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary Pancreat Dis Int 13:570–9. https://doi.org/10.1016/S1499-3872(14)60261-7

    Article  CAS  PubMed  Google Scholar 

  30. Strzyz P (2020) AMPK against NASH. Nat Rev Mol Cell Biol 21(4):181–181. https://doi.org/10.1038/s41580-020-0225-0

    Article  CAS  PubMed  Google Scholar 

  31. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR (2016) Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab 311:E730–E740. https://doi.org/10.1152/AJPENDO.00225.2016

    Article  PubMed  Google Scholar 

  32. Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C et al (2020) The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2020.110785

    Article  PubMed  Google Scholar 

  33. Olivares M, Rodriguez J, Pötgens SA, Neyrinck AM, Cani PD, Bindels LB et al (2019) The janus face of cereals: wheat-derived prebiotics counteract the detrimental effect of gluten on metabolic homeostasis in mice fed a high-fat/high-sucrose diet. Mol Nutr Food Res 63:1900632. https://doi.org/10.1002/MNFR.201900632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kershenobich Stalnikowitz D, Weissbrod AB (2003) Liver fibrosis and inflammation. A Rev Ann Hepatol 2:159–163. https://doi.org/10.1016/S1665-2681(19)32127-1

    Article  Google Scholar 

  35. Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H et al (2018) Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol 24:2661–2672. https://doi.org/10.3748/WJG.V24.I25.2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thapaliya S, Wree A, Povero D, Inzaugarat ME, Berk M, Dixon L et al (2014) Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Dig Dis Sci 59:1197–1206. https://doi.org/10.1007/S10620-014-3167-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A, Wands JR (2013) Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol 58:785–791. https://doi.org/10.1016/J.JHEP.2012.11.042

    Article  CAS  PubMed  Google Scholar 

  38. Matsuzaka T, Shimano H (2011) Molecular mechanisms involved in hepatic steatosis and insulin resistance. J Diabetes Investig 2:170. https://doi.org/10.1111/J.2040-1124.2011.00111.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lian CY, Zhai ZZ, Li ZF, Wang L (2020) High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chem Biol Interact. https://doi.org/10.1016/J.CBI.2020.109199

    Article  PubMed  Google Scholar 

  40. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV et al (2003) Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278:498–505. https://doi.org/10.1074/JBC.M210062200

    Article  CAS  PubMed  Google Scholar 

  41. Montagner A, Polizzi A, Fouché E, Ducheix S, Lippi Y, Lasserre F et al (2016) Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65:1202–1214. https://doi.org/10.1136/GUTJNL-2015-310798

    Article  CAS  PubMed  Google Scholar 

  42. Cheng CF, Ku HC, Lin H (2018) PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci. https://doi.org/10.3390/IJMS19113447

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z, Tirosh O (2011) Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab Investig 91(7):1018–28. https://doi.org/10.1038/labinvest.2011.55

    Article  CAS  PubMed  Google Scholar 

  44. Croce MA, Eagon JC, LaRiviere LL, Korenblat KM, Klein S, Finck BN (2007) Hepatic lipin 1beta expression is diminished in insulin-resistant obese subjects and is reactivated by marked weight loss. Diabetes 56:2395–2399. https://doi.org/10.2337/DB07-0480

    Article  CAS  PubMed  Google Scholar 

  45. Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM (2020) Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. https://doi.org/10.1038/S41419-020-03003-W

    Article  PubMed  PubMed Central  Google Scholar 

  46. Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S et al (2005) Increased expression of PPARgamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun 336:215–222. https://doi.org/10.1016/J.BBRC.2005.08.070

    Article  CAS  PubMed  Google Scholar 

  47. Wondmkun YT (2020) Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes 13:3611. https://doi.org/10.2147/DMSO.S275898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J et al (2006) FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281:10105–10117. https://doi.org/10.1074/JBC.M600272200

    Article  CAS  PubMed  Google Scholar 

  49. Pan X, Zhang Y, Kim HG, Liangpunsakul S, Dong XC (2017) FOXO transcription factors protect against the diet-induced fatty liver disease. Sci Rep 7:1–12. https://doi.org/10.1038/srep44597

    Article  Google Scholar 

  50. Mu J, Wang X, Wang Q, Cheng F, Zhu W, Li C et al (2019) Molecular mechanism of non-alcoholic fatty liver disease induced and aggravated by chronic stress through HSL/ATGL-FFA which promotes fat mobilization. J Traditi Chin Med Sci 6:315–324. https://doi.org/10.1016/J.JTCMS.2019.08.001

    Article  Google Scholar 

  51. Xia B, Cai GH, Yang H, Wang SP, Mitchell GA, Wu JW (2017) Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice. PLoS Genet. https://doi.org/10.1371/JOURNAL.PGEN.1007110

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deng T, Shan S, Li PP, Shen ZF, Lu XP, Cheng J et al (2006) Peroxisome proliferator-activated receptor-gamma transcriptionally up-regulates hormone-sensitive lipase via the involvement of specificity protein-1. Endocrinology 147:875–884. https://doi.org/10.1210/EN.2005-0623

    Article  CAS  PubMed  Google Scholar 

  53. Xu H, Zhao Q, Song N, Yan Z, Lin R, Wu S et al (2020) AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum-mitochondria axis. Nat Commun 11:1–16. https://doi.org/10.1038/s41467-020-19668-y

    Article  CAS  Google Scholar 

  54. Shan L, Qiao SW, Arentz-Hansen H, Molberg Ø, Gray GM, Sollid LM et al (2005) Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res 4:1732–1741. https://doi.org/10.1021/PR050173T/SUPPL_FILE/PR050173TSI20050611_110731.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kõiv V, Tenson T (2021) Gluten-degrading bacteria: availability and applications. Appl Microbiol Biotechnol 105:3045–3059. https://doi.org/10.1007/S00253-021-11263-5

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang L, Andersen D, Roager HM, Bahl MI, Hansen CHF, Danneskiold-Samsøe NB et al (2017) Effects of gliadin consumption on the intestinal microbiota and metabolic homeostasis in mice fed a high-fat diet. Sci Rep. https://doi.org/10.1038/SREP44613

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bruun SW, Josefsen K, Tanassi JT, Marek A, Pedersen MHF, Sidenius U et al (2016) Large gliadin peptides detected in the pancreas of nod and healthy mice following oral administration. J Diabetes Res. https://doi.org/10.1155/2016/2424306

    Article  PubMed  PubMed Central  Google Scholar 

  58. Haupt-Jorgensen M, Larsen J, Josefsen K, Jørgensen TZ, Antvorskov JC, Hansen AK et al (2018) Gluten-free diet during pregnancy alleviates signs of diabetes and celiac disease in NOD mouse offspring. Diabetes Metab Res Rev. https://doi.org/10.1002/DMRR.2987

    Article  PubMed  Google Scholar 

  59. Drago S, El Asmar R, Di Pierro M, Clemente MG, Tripathi A, Sapone A et al (2006) Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41:408–419. https://doi.org/10.1080/00365520500235334

    Article  CAS  PubMed  Google Scholar 

  60. Galiero R, Caturano A, Vetrano E, Cesaro A, Rinaldi L, Salvatore T et al (2021) Pathophysiological mechanisms and clinical evidence of relationship between nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease. Rev Cardiovasc Med. https://doi.org/10.31083/j.rcm2203082

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the laboratory technician Maria Helena Alves Oliveira.

Funding

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior, Brazil (CAPES) Finance Code 001 (postdoctoral fellowship).

Author information

Authors and Affiliations

Authors

Contributions

ECA: Conceptualization, project administration, design of the study, methodology, formal analysis, investigation, data curation, and writing-original draft preparation. WFB: Methodology and revised the manuscript critically for intellectual content. EAS: Methodology. PCLL: Methodology and revised the manuscript critically for intellectual content. LSAC: Conceptualization, resources, and design of the study. LAAO: Methodology and interpretation of data. PPC: Resources and data analysis. VSL: Resources and acquisition of data. FLPS: Conceptualization and revised the manuscript critically for intellectual content. JMNP: Conceptualization and methodology. JIAL: Conceptualization, supervision, project administration, design of the study, and reviewing and editing the manuscript.

Corresponding author

Correspondence to Edenil Costa Aguilar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 450 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, E.C., Fernandes-Braga, W., Santos, E.A. et al. Gluten worsens non-alcoholic fatty liver disease by affecting lipogenesis and fatty acid oxidation in diet-induced obese apolipoprotein E-deficient mice. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04802-3

Keywords

Navigation