Skip to main content
Log in

M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Radiotherapy is essential to cancer treatment, while it inevitably injures surrounding normal tissues, and bone tissue is one of the most common sites prone to irradiation. Bone marrow mesenchymal stem cells (BMMSCs) are sensitive to irradiation and the irradiated dysfunction of BMMSCs may be closely related to irradiation-induced bone damage. Macropahges play important role in regulating stem cell function, bone metabolic balance and irradiation response, but the effects of macrophages on irradiated BMMSCs are still unclear. This study aimed to investigate the role of macrophages and macrophage-derived exosomes in restoring irradiated BMMSCs function. The effects of macrophage conditioned medium (CM) and macrophage-derived exosomes on osteogenic and fibrogenic differentiation capacities of irradiated BMMSCs were detected. The key microribonucleic acids (miRNAs) and targeted proteins in exosomes were also determined. The results showed that irradiation significantly inhibited the proliferation of BMMSCs, and caused differentiation imbalance of BMMSCs, with decreased osteogenic differentiation and increased fibrogenic differentiation. M2 macrophage-derived exosomes (M2D-exos) inhibited the fibrogenic differentiation and promoted the osteogenic differentiation of irradiated BMMSCs. We identified that miR-142-3p was significantly overexpressed in M2D-exos and irradiated BMMSCs treated with M2D-exos. After inhibition of miR-142-3p in M2 macrophage, the effects of M2D-exos on irradiated BMMSCs differentiation were eliminated. Furthermore, transforming growth factor beta 1 (TGF-β1), as a direct target of miR-142-3p, was significantly decreased in irradiated BMMSCs treated with M2D-exos. This study indicated that M2D-exos could carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1. These findings pave a new way for promising and cell-free method to treat irradiation-induced bone damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, LT, as well as CZ, upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  2. Herrera FG, Bourhis J, Coukos G (2017) Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA-Cancer J Clin 67(1):65–85. https://doi.org/10.3322/caac.21358

    Article  PubMed  Google Scholar 

  3. Curi MM, Cardoso CL, de Lima HG, Kowalski LP, Martins MD (2016) Histopathologic and histomorphometric analysis of irradiation injury in bone and the surrounding soft tissues of the jaws. J Oral Maxillofac Surg 74(1):190–199. https://doi.org/10.1016/j.joms.2015.07.009

    Article  PubMed  Google Scholar 

  4. D’Oronzo S, Stucci S, Tucci M, Silvestris F (2015) Cancer treatment-induced bone loss (ctibl): pathogenesis and clinical implications. Cancer Treat Rev 41(9):798–808. https://doi.org/10.1016/j.ctrv.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Pacheco R, Stock H (2013) Effects of radiation on bone. Curr Osteoporos Rep 11(4):299–304. https://doi.org/10.1007/s11914-013-0174-z

    Article  PubMed  Google Scholar 

  6. Delanian S, Lefaix JL (2004) The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol 73(2):119–131. https://doi.org/10.1016/j.radonc.2004.08.021

    Article  PubMed  Google Scholar 

  7. Terenzi V, Della MM, Raponi I, Battisti A, Priore P, Barbera G, Romeo U, Polimeni A, Valentini V (2020) Mronj and ornj: when a single letter leads to substantial differences. Oral Oncol. https://doi.org/10.1016/j.oraloncology.2020.104817

    Article  PubMed  Google Scholar 

  8. Baker N, Boyette LB, Tuan RS (2015) Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70:37–47. https://doi.org/10.1016/j.bone.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Cao W, Kong X, Li J, Chen X, Ge Y, Zhong W, Fang S (2018) Protective effects of α-2-macroglobulin on human bone marrow mesenchymal stem cells in radiation injury. Mol Med Rep 18(5):4219–4228. https://doi.org/10.3892/mmr.2018.9449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Zhu G, Wang J, Chen J (2016) Irradiation alters the differentiation potential of bone marrow mesenchymal stem cells. Mol Med Rep 13(1):213–223. https://doi.org/10.3892/mmr.2015.4539

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Chang N, Liu X, Han Z, Zhu T, Li C, Yang L, Li L (2012) Bone marrow-derived mesenchymal stem cells differentiate to hepatic myofibroblasts by transforming growth factor-β1 via sphingosine kinase/sphingosine 1-phosphate (s1p)/s1p receptor axis. Am J Pathol 181(1):85–97. https://doi.org/10.1016/j.ajpath.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  12. Wang B, Wei J, Meng L, Wang H, Qu C, Chen X, Xin Y, Jiang X (2020) Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2019.109560

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu Z, Li T, Zhu F, Deng S, Li X, He Y (2019) Regulatory roles of mir-22/redd1-mediated mitochondrial ros and cellular autophagy in ionizing radiation-induced bmsc injury. Cell Death Dis 10(3):227. https://doi.org/10.1038/s41419-019-1373-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riehl TE, Alvarado D, Ee X, Zuckerman A, Foster L, Kapoor V, Thotala D, Ciorba MA, Stenson WF (2019) Lactobacillus rhamnosus gg protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 68(6):1003–1013. https://doi.org/10.1136/gutjnl-2018-316226

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Wang Y, Li S, Li Y (2021) Exosomes derived from m2 macrophages facilitate osteogenesis and reduce adipogenesis of bmscs. Front Endocrinol. https://doi.org/10.3389/fendo.2021.680328

    Article  Google Scholar 

  16. Liu Z, Cao K, Liao Z, Chen Y, Lei X, Wei Q, Liu C, Sun X, Yang Y, Cai J, Gao F (2020) Monophosphoryl lipid a alleviated radiation-induced testicular injury through tlr4-dependent exosomes. J Cell Mol Med 24(7):3917–3930. https://doi.org/10.1111/jcmm.14978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xia Y, He XT, Xu XY, Tian BM, An Y, Chen FM (2020) Exosomes derived from m0, m1 and m2 macrophages exert distinct influences on the proliferation and differentiation of mesenchymal stem cells. Peer J. https://doi.org/10.7717/peerj.8970

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dai Y, Wang S, Chang S, Ren D, Shali S, Li C, Yang H, Huang Z, Ge J (2020) M2 macrophage-derived exosomes carry microrna-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting txnip and the tlr4/nf-κb/nlrp3 inflammasome signaling pathway. J Mol Cell Cardiol 142:65–79. https://doi.org/10.1016/j.yjmcc.2020.02.007

    Article  CAS  PubMed  Google Scholar 

  19. Long H, Zhu Y, Lin Z, Wan J, Cheng L, Zeng M, Tang Y, Zhao R (2019) Mir-381 modulates human bone mesenchymal stromal cells (bmscs) osteogenesis via suppressing wnt signaling pathway during atrophic nonunion development. Cell Death Dis 10(7):470. https://doi.org/10.1038/s41419-019-1693-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duan M, Zhang Y, Zhang H, Meng Y, Qian M, Zhang G (2020) Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-beta1 in wound healing. Stem Cell Res Ther 11(1):452. https://doi.org/10.1186/s13287-020-01971-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He L, He T, Xing J, Zhou Q, Fan L, Liu C, Chen Y, Wu D, Tian Z, Liu B, Rong L (2020) Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther 11(1):276. https://doi.org/10.1186/s13287-020-01781-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui H, He Y, Chen S, Zhang D, Yu Y, Fan C (2019) Macrophage-derived mirna-containing exosomes induce peritendinous fibrosis after tendon injury through the mir-21-5p/smad7 pathway. Mol Ther-Nucl Acids 14:114–130. https://doi.org/10.1016/j.omtn.2018.11.006

    Article  CAS  Google Scholar 

  23. He Y (2021) the past, present and future of diagnosis and treatment of osteoradionecrosis of the jaws. Zhonghua Kou Qiang Yi Xue Za Zhi 56(5):410–414. https://doi.org/10.3760/cma.j.cn112144-20210122-00035

    Article  CAS  PubMed  Google Scholar 

  24. Pinzur L, Akyuez L, Levdansky L, Blumenfeld M, Volinsky E, Aberman Z, Reinke P, Ofir R, Volk HD, Gorodetsky R (2018) Rescue from lethal acute radiation syndrome (ars) with severe weight loss by secretome of intramuscularly injected human placental stromal cells. J Cachexia Sarcopenia Muscle 9(6):1079–1092. https://doi.org/10.1002/jcsm.12342

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao SJ, Kong FQ, Jie J, Li Q, Liu H, Xu AD, Yang YQ, Jiang B, Wang DD, Zhou ZQ, Tang PY, Chen J, Wang Q, Zhou Z, Chen Q, Yin GY, Zhang HW, Fan J (2020) Macrophage msr1 promotes bmsc osteogenic differentiation and m2-like polarization by activating pi3k/akt/gsk3β/β-catenin pathway. Theranostics 10(1):17–35. https://doi.org/10.7150/thno.36930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu X, Shi Y, Dong M, Jiang L, Yang J, Liu Z (2021) Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis 12(9):818. https://doi.org/10.1038/s41419-021-04087-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao C, Gu Y, Wang Y, Qin Q, Wang T, Huang M, Zhang H, Qu Y, Zhang J, Du Z, Jiang XX, Xu L (2021) Mir-129–5p promotes osteogenic differentiation of bmscs and bone regeneration via repressing dkk3. Stem Cells Int. https://doi.org/10.1155/2021/7435605

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guo Y, Chi X, Wang Y, Heng BC, Wei Y, Zhang X, Zhao H, Yin Y, Deng X (2020) Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther 11(1):245. https://doi.org/10.1186/s13287-020-01704-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bai J, Wang Y, Wang J, Zhai J, He F, Zhu G (2020) Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling. Am J Physiol-Cell Physiol 318(5):C1005–C1017. https://doi.org/10.1152/ajpcell.00520.2019

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G (2021) Radiation-induced osteocyte senescence alters bone marrow mesenchymal stem cell differentiation potential via paracrine signaling. Int J Mol Sci 22(17):9323. https://doi.org/10.3390/ijms22179323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu D, Kong F, Yuan Y, Seth P, Xu W, Wang H, Xiao F, Wang L, Zhang Q, Yang Y, Wang H (2018) Decorin-modified umbilical cord mesenchymal stem cells (mscs) attenuate radiation-induced lung injuries via regulating inflammation, fibrotic factors, and immune responses. Int J Radiat Oncol Biol Phys 101(4):945–956. https://doi.org/10.1016/j.ijrobp.2018.04.007

    Article  PubMed  Google Scholar 

  32. Lei X, He N, Zhu L, Zhou M, Zhang K, Wang C, Huang H, Chen S, Li Y, Liu Q, Han Z, Guo Z, Han Z, Li Z (2021) Mesenchymal stem cell-derived extracellular vesicles attenuate radiation-induced lung injury via mirna-214-3p. Antioxid Redox Signal 35(11):849–862. https://doi.org/10.1089/ars.2019.7965

    Article  CAS  PubMed  Google Scholar 

  33. Wen S, Dooner M, Papa E, Del TM, Pereira M, Borgovan T, Cheng Y, Goldberg L, Liang O, Camussi G, Quesenberry P (2019) Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a radiation injury bone marrow murine model. Int J Mol Sci 20(21):5468. https://doi.org/10.3390/ijms20215468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mansouri N, Willis GR, Fernandez-Gonzalez A, Reis M, Nassiri S, Mitsialis SA, Kourembanas S (2019) Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight. https://doi.org/10.1172/jci.insight.128060

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang H, Zhang H, Huang B, Miao G, Yan X, Gao G, Luo Y, Chen H, Chen W, Yang L (2018) Mesenchymal stem cells reverse high-fat diet-induced non-alcoholic fatty liver disease through suppression of cd4+ t lymphocytes in mice. Mol Med Rep 17(3):3769–3774. https://doi.org/10.3892/mmr.2017.8326

    Article  CAS  PubMed  Google Scholar 

  36. Yang S, Jiang H, Qian M, Ji G, Wei Y, He J, Tian H, Zhao Q (2022) Msc-derived sev-loaded hyaluronan hydrogel promotes scarless skin healing by immunomodulation in a large skin wound model. Biomed Mater. https://doi.org/10.1088/1748-605X/ac68bc

    Article  PubMed  Google Scholar 

  37. Cheuk YC, Xu S, Zhu D, Luo Y, Chen T, Chen J, Li J, Shi Y, Zhang Y, Rong R (2022) Monocytic myeloid-derived suppressor cells inhibit myofibroblastic differentiation in mesenchymal stem cells through il-15 secretion. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.817402

    Article  PubMed  PubMed Central  Google Scholar 

  38. Epperly MW, Franicola D, Zhang X, Nie S, Wang H, Bahnson AB, Shields DS, Goff JP, Shen H, Greenberger JS (2006) Reduced irradiation pulmonary fibrosis and stromal cell migration in smad3-/- marrow chimeric mice. In Vivo 20(5):573–582

    CAS  PubMed  Google Scholar 

  39. Wang LK, Wu TJ, Hong JH, Chen FH, Yu J, Wang CC (2020) Radiation induces pulmonary fibrosis by promoting the fibrogenic differentiation of alveolar stem cells. Stem Cells Int 2020:6312053. https://doi.org/10.1155/2020/6312053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196:80–89. https://doi.org/10.1016/j.biomaterials.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  41. Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, Zhou L, Ning C (2021) Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater 6(9):2754–2766. https://doi.org/10.1016/j.bioactmat.2021.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu L, Huang K, Li Q, Wu H, Gao Y, Xu X, Liu X, Han L (2023) Crosstalk between myofibroblasts and macrophages: a regulative factor of valvular fibrosis in calcific aortic valve disease. Cell Biol Int 47(4):754–767. https://doi.org/10.1002/cbin.11980

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Zhang Y, Li J, Li C, Zhao R, Shen C, Liu W, Rong J, Wang Z, Ge J, Shi B (2023) Hypoxia induces m2 macrophages to express vsig4 and mediate cardiac fibrosis after myocardial infarction. Theranostics 13(7):2192–2209. https://doi.org/10.7150/thno.78736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grim JC, Aguado BA, Vogt BJ, Batan D, Andrichik CL, Schroeder ME, Gonzalez-Rodriguez A, Yavitt FM, Weiss RM, Anseth KS (2020) Secreted factors from proinflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells. Arterioscler Thromb Vasc Biol 40(11):e296–e308. https://doi.org/10.1161/ATVBAHA.120.315261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He XT, Li X, Yin Y, Wu RX, Xu XY, Chen FM (2018) The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells. J Cell Mol Med 22(2):1302–1315. https://doi.org/10.1111/jcmm.13431

    Article  CAS  PubMed  Google Scholar 

  46. Zhang L, Yu D (2019) Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta-Rev Cancer 1871(2):455–468. https://doi.org/10.1016/j.bbcan.2019.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen X, Wan Z, Yang L, Song S, Fu Z, Tang K, Chen L, Song Y (2022) Exosomes derived from reparative m2-like macrophages prevent bone loss in murine periodontitis models via il-10 mrna. J Nanobiotechnol 20(1):110. https://doi.org/10.1186/s12951-022-01314-y

    Article  CAS  Google Scholar 

  48. Xiong Y, Chen L, Yan C, Zhou W, Yu T, Sun Y, Cao F, Xue H, Hu Y, Chen D, Mi B, Liu G (2020) M2 macrophagy-derived exosomal mirna-5106 induces bone mesenchymal stem cells towards osteoblastic fate by targeting salt-inducible kinase 2 and 3. J Nanobiotechnol 18(1):66. https://doi.org/10.1186/s12951-020-00622-5

    Article  CAS  Google Scholar 

  49. Ma C, Wang C, Zhang Y, Li Y, Fu K, Gong L, Zhou H, Li Y (2023) Phillygenin inhibited m1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal mir-125b-5p. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2023.114264

    Article  PubMed  PubMed Central  Google Scholar 

  50. Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F, Dong X (2022) Downregulated mir-129-5p expression inhibits rat pulmonary fibrosis by upregulating stat1 gene expression in macrophages. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2022.108880

    Article  PubMed  Google Scholar 

  51. Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF (2019) Microrna-328 in exosomes derived from m2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via fam13a in a rat model. Exp Mol Med 51(6):1–16. https://doi.org/10.1038/s12276-019-0255-x

    Article  CAS  PubMed  Google Scholar 

  52. Kishore A, Petrek M (2021) Roles of macrophage polarization and macrophage-derived mirnas in pulmonary fibrosis. Front Immunol. https://doi.org/10.3389/fimmu.2021.678457

    Article  PubMed  PubMed Central  Google Scholar 

  53. Guiot J, Cambier M, Boeckx A, Henket M, Nivelles O, Gester F, Louis E, Malaise M, Dequiedt F, Louis R, Struman I, Njock MS (2020) Macrophage-derived exosomes attenuate fibrosis in airway epithelial cells through delivery of antifibrotic mir-142-3p. Thorax 75(10):870–881. https://doi.org/10.1136/thoraxjnl-2019-214077

    Article  PubMed  Google Scholar 

  54. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, Chen J, Liao JY, Cui X, Zeng Y, Yao H, Su F, Liu Q, Jiang S, Song E (2015) Mir-142-5p and mir-130a-3p are regulated by il-4 and il-13 and control profibrogenic macrophage program. Nat Commun 6:8523. https://doi.org/10.1038/ncomms9523

    Article  CAS  PubMed  Google Scholar 

  55. Duan M, Zhang Y, Zhang H, Meng Y, Qian M, Zhang G (2020) Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res Ther 11(1):452. https://doi.org/10.1186/s13287-020-01971-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Y, Ouyang M, Wang Q, Jian Z (2016) Microrna-142-3p inhibits hypoxia/reoxygenation-induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med 38(5):1377–1386. https://doi.org/10.3892/ijmm.2016.2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu N, Chen YS, Zhu H, Li WS, Sun ZW, Zhang HB, Li XY, Zhang B, Zhang C, Wen ZQ, Bai YT (2021) Upregulation of mir-142-5p induced by lipopolysaccharide contributes to apoptosis of hepatocytes and hepatic failure. Eur Rev Med Pharmacol Sci 25(16):5293–5303. https://doi.org/10.26355/eurrev_202108_26550

    Article  CAS  PubMed  Google Scholar 

  58. Fordham JB, Guilfoyle K, Naqvi AR, Nares S (2016) Mir-142-3p is a rankl-dependent inducer of cell death in osteoclasts. Sci Rep 6:24980. https://doi.org/10.1038/srep24980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tu M, Tang J, He H, Cheng P, Chen C (2017) Mir-142-5p promotes bone repair by maintaining osteoblast activity. J Bone Miner Metab 35(3):255–264. https://doi.org/10.1007/s00774-016-0757-8

    Article  CAS  PubMed  Google Scholar 

  60. Zhang J, Yu X, Yu Y, Gong Y (2017) Microrna expression analysis during fk506-induced osteogenic differentiation in rat bone marrow stromal cells. Mol Med Rep 16(1):581–590. https://doi.org/10.3892/mmr.2017.6655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81903249) and Shaanxi Provincial Natural Science Basic Research Program project (2022JZ-50).

Funding

This work was supported by the National Natural Science Foundation of China (81903249) and Shaanxi Provincial Natural Science Basic Research Program project (2022JZ-50).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the general study conception and design. The material preparation and data collection were performed by CH, LZ, YX, ZT, LJ and KG. The data analysis and visualization were performed by Chong Huang, Lu Zhao, and CZ. The first draft of the manuscript was written by CH and LZ. The manuscript was revised by LT and CZ. All authors commented on previous versions of the manuscript, gave valuable suggestions for corrections, and approved the final manuscript. LT and CZ supervised the research project.

Corresponding authors

Correspondence to Lei Tian or Chunlin Zong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose in connection with this manuscript.

Ethical approval

All animal research protocols in this study were approved by the Welfare and Ethics Committee of Laboratory Animal Center of the Fourth Military Medical University (Approval number: IACUC-20210971).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 671298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Zhao, L., Xiao, Y. et al. M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1. Mol Cell Biochem 479, 993–1010 (2024). https://doi.org/10.1007/s11010-023-04775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04775-3

Keywords

Navigation