Skip to main content

Advertisement

Log in

Emerging role of lipophagy in liver disorders

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No external data were used for the current study.

References

  1. Deretic V, Klionsky DJJA (2018) Autophagy and inflammation: a special review issue. Autophagy 14(2):179–180

    Article  PubMed  PubMed Central  Google Scholar 

  2. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12):2435–2444

    Article  CAS  PubMed  Google Scholar 

  3. Schulze RJ et al (2017) Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol Commun 1(5):359–369

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Z et al (2018) Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother 97:339–348

    Article  CAS  PubMed  Google Scholar 

  5. Moore H-PH et al (2005) Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase. J Biol Chem 280(52):43109–43120

    Article  CAS  PubMed  Google Scholar 

  6. Khawar MB, Abbasi MH, Rafiq M, Naz N, Mehmood R, Sheikh N (2021) A decade of mighty lipophagy: what we know and what facts we need to know? Oxid Med Cell Longev 2021:5539161. https://doi.org/10.1155/2021/5539161

  7. Zimmermann R et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700):1383–1386

    Article  CAS  PubMed  Google Scholar 

  8. Ong KT et al (2011) Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53(1):116–126

    Article  CAS  PubMed  Google Scholar 

  9. Obrowsky S et al (2013) Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J Lipid Res 54(2):425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qian H et al (2021) Autophagy in liver diseases: a review. Mol Aspects Med 82:100973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maus M et al (2017) Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab 25(3):698–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogov V et al (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53(2):167–178

    Article  CAS  PubMed  Google Scholar 

  13. Rui Y-N et al (2015) Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol 17(3):262–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spandl J et al (2011) Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via Its G2 binding region. J Biol Chem 286(7):5599–5606

    Article  CAS  PubMed  Google Scholar 

  15. Kiss RS, Nilsson T (2014) Rab proteins implicated in lipid storage and mobilization. J Biomed Res 28(3):169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schroeder B et al (2015) The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61(6):1896–1907

    Article  CAS  PubMed  Google Scholar 

  17. Li Z et al (2016) A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci Adv 2(12):e1601470

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Z et al (2017) Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 11:322–334

    Article  CAS  PubMed  Google Scholar 

  19. Martinez-Lopez N et al (2016) Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 23(1):113–127

    Article  CAS  PubMed  Google Scholar 

  20. Schulze RJ et al (2017) Breaking fat: the regulation and mechanisms of lipophagy. Biochimica et Biophysica Acta—Mol Cell Biol Lipids 1862(10):1178–1187

    Article  CAS  Google Scholar 

  21. Kim K-Y et al (2016) SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci Rep 6(1):1–14

    CAS  Google Scholar 

  22. Negoita F et al (2019) PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes. J Cell Biochem 120(1):343–356

    Article  CAS  PubMed  Google Scholar 

  23. Dupont N et al (2014) Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 24(6):609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shpilka T et al (2015) Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 34(16):2117–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ward C et al (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochimica et Biophysica Acta—Mol Cell Biol Lipids 1861(4):269–284

    Article  CAS  Google Scholar 

  26. Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Warner TG et al (1981) Purification of the lysosomal acid lipase from human liver and its role in lysosomal lipid hydrolysis. J Biol Chem 256(6):2952–2957

    Article  CAS  PubMed  Google Scholar 

  28. Grumet L et al (2016) Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover. J Biol Chem 291(34):17977–17987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaushik S, Cuervo AM (2015) Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 17(6):759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaushik S, Cuervo AMJA (2016) AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12(2):432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seo AY et al (2017) AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation. Elife 6:e21690

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li Y et al (2019) CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway [S]. J Lipid Res 60(4):844–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lapierre LR et al (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21(18):1507–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin C-W et al (2013) Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 58(5):993–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang H, Yan S, Khambu B, Ma F, Li Y, Chen X, Martina JA, Puertollano R, Li Y, Chalasani N, Yin XM (2018) Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy 14(10):1779–1795

  36. Lee JM et al (2014) Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516(7529):112–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seok S et al (2014) Transcriptional regulation of autophagy by an FXR–CREB axis. Nature 516(7529):108–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonhoure N et al (2015) Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev 29(9):934–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Willis IM, Moir RD, Hernandez NJ (2018) Metabolic programming a lean phenotype by deregulation of RNA polymerase III. Proc Natl Acad Sci 115(48):12182–12187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Rourke EJ, Ruvkun GJN (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15(6):668–676

    Article  PubMed  PubMed Central  Google Scholar 

  41. Settembre C et al (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15(6):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiong J et al (2016) TFE3 alleviates hepatic steatosis through autophagy-induced lipophagy and PGC1α-mediated fatty acid β-Oxidation. Int J Mol Sci 17(3):387

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barbato DL et al (2013) FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis 4(10):e861–e861

    Article  Google Scholar 

  44. Xiong X et al (2012) The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 287(46):39107–39114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Samuel VT, Shulman GIJC (2018) Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metabol 27(1):22–41

    Article  CAS  Google Scholar 

  46. Kounakis K et al (2019) Emerging roles of lipophagy in health and disease. Front Cell Dev Biol 7:185

    Article  PubMed  PubMed Central  Google Scholar 

  47. Allaire M et al (2019) Autophagy in liver diseases: time for translation? J Hepatol 70(5):985–998

    Article  PubMed  Google Scholar 

  48. Levine B, Kroemer GJC (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Z et al (2016) A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci Adv 2(12):e1601470

    Article  PubMed  PubMed Central  Google Scholar 

  50. Smith BK et al (2016) Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol-Endocrinol Metabol 311(4):E730–E740

    Article  Google Scholar 

  51. Deng X et al (2017) Regulation of SREBP-2 intracellular trafficking improves impaired autophagic flux and alleviates endoplasmic reticulum stress in NAFLD. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids 1862(3):337–350

  52. Kurahashi T et al (2015) An SOD1 deficiency enhances lipid droplet accumulation in the fasted mouse liver by aborting lipophagy. Biochem Biophys Res Commun 467(4):866–871

    Article  CAS  PubMed  Google Scholar 

  53. Zhu S et al (2016) FGF21 ameliorates nonalcoholic fatty liver disease by inducing autophagy. Mol Cell Biochem 420(1):107–119

    Article  CAS  PubMed  Google Scholar 

  54. Zubiete-Franco I et al (2016) Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J Hepatol 64(2):409–418

    Article  CAS  PubMed  Google Scholar 

  55. Luci C, Bourinet M, Leclère PS, Anty R, Gual P (2020) Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies. Front Endocrinol 11:597648

  56. Dowman JK, Tomlinson J, Newsome PM (2010) Pathogenesis of non-alcoholic fatty liver disease. QJM Int J Med 103(2):71–83

    Article  CAS  Google Scholar 

  57. Yoon HJ, Cha BS (2014) Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease. World J Hepatol 6(11):800

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bettermann K, Hohensee T, Haybaeck JJ (2014) Steatosis and steatohepatitis: complex disorders. Int J Mol Sci 15(6):9924–9944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Argo CK et al (2009) Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 51(2):371–379

    Article  CAS  PubMed  Google Scholar 

  60. Starley BQ, Calcagno CJ, Harrison SAJH (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51(5):1820–1832

    Article  PubMed  Google Scholar 

  61. Than NN, Newsome PNJA (2015) A concise review of non-alcoholic fatty liver disease. Atherosclerosis 239(1):192–202

    Article  CAS  PubMed  Google Scholar 

  62. Angulo PJH (2010) Corrections: long-term mortality in nonalcoholic fatty liver disease: is liver histology of any prognostic significance? Hepatology 51(5):1868–1868

    Article  Google Scholar 

  63. Ekstedt M et al (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44(4):865–873

    Article  CAS  PubMed  Google Scholar 

  64. Adams LA et al (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129(1):113–121

    Article  PubMed  Google Scholar 

  65. Donnelly KL et al (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115(5):1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohen JC, Horton JD, Hobbs HHJS (2011) Human fatty liver disease: old questions and new insights. Science 332(6037):1519–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bradbury MW, Physiology L (2006) Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol-Gastrointest Liver Physiol 290(2):G194–G198

  68. Musso G, Gambino R, Cassader MJ (2009) Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Progr Lipid Res 48(1):1–26

    Article  CAS  Google Scholar 

  69. Fabbrini E, Magkos FJN (2015) Hepatic steatosis as a marker of metabolic dysfunction. Nutrients 7(6):4995–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hudgins LC et al (2000) Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J Lipid Res 41(4):595–604

    Article  CAS  PubMed  Google Scholar 

  71. Parks EJ (2002) Dietary carbohydrate’s effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations. Br J Nutr 87(S2):S247–S253

    Article  CAS  PubMed  Google Scholar 

  72. Diraison F, Beylot MJA (1998) Role of human liver lipogenesis and reesterification in triglycerides secretion and in FFA reesterification. Am J Physiol-Endocrinol Metabol 274(2):E321–E327

  73. Sanyal AJ et al (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120(5):1183–1192

    Article  CAS  PubMed  Google Scholar 

  74. Miele L et al (2003) Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test. Am J Gastroenterol 98(10):2335

    Article  PubMed  Google Scholar 

  75. Marra F et al (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14(2):72–81

    Article  CAS  PubMed  Google Scholar 

  76. Reddy JK (2001) III. Peroxisomal β-oxidation, PPARα, and steatohepatitis. Am J Physiol-Gastrointest Liver Physiol 281(6):G1333–G1339

  77. Day CP (20002) Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol 16(5):663–678

  78. Fabbrini E et al (2008) Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134(2):424–431

    Article  CAS  PubMed  Google Scholar 

  79. Adiels M et al (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49(4):755–765

    Article  CAS  PubMed  Google Scholar 

  80. Musso G et al (2005) Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology 42(5):1175–1183

    Article  CAS  PubMed  Google Scholar 

  81. Fujita K et al (2009) Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology 50(3):772–780

    Article  CAS  PubMed  Google Scholar 

  82. Lee YA, Wallace MC, Friedman SLJG (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64(5):830–841

    Article  CAS  PubMed  Google Scholar 

  83. Crosas-Molist E, Fabregat IJRB (2015) Role of NADPH oxidases in the redox biology of liver fibrosis. Redox Biol 6:106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marrone G, Shah VH, Gracia-Sancho JJ (2016) Sinusoidal communication in liver fibrosis and regeneration. J Hepatol 65(3):608–617

    Article  PubMed  PubMed Central  Google Scholar 

  85. Iredale JP, Thompson A, Henderson NC (2013) Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta 1832(7):876–883

    Article  CAS  PubMed  Google Scholar 

  86. Schuppan D et al (2018) Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 68–69:435–451

    Article  PubMed  Google Scholar 

  87. Ge PS, Runyon BA (2016) Treatment of patients with cirrhosis. N Engl J Med 375(8):767–777

    Article  CAS  PubMed  Google Scholar 

  88. Kang N, Gores GJ, Shah VHJH (2011) Hepatic stellate cells: partners in crime for liver metastases? Hepatology 54(2):707–713

    Article  CAS  PubMed  Google Scholar 

  89. Carloni V, Luong TV, Rombouts KJLI (2014) Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever. Liver Int 34(6):834–843

    Article  PubMed  Google Scholar 

  90. Shoukry NH, Fabre T, Gandhi CR (2016) A novel role for hepatic stellate cells in pathogenesis of visceral leishmaniasis. Wiley, New York

    Book  Google Scholar 

  91. Schon H-T et al (2016) Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis. Front Pharmacol 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  92. He L et al (2016) Activation of hepatic stellate cell in Pten null liver injury model. Fibrogenesis Tissue Repair 9(1):1–13

    Article  CAS  Google Scholar 

  93. Page A et al (2016) Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 64(3):661–673

    Article  CAS  PubMed  Google Scholar 

  94. Zhang F et al (2016) Curcumin raises lipid content by Wnt pathway in hepatic stellate cell. J Surg Res 200(2):460–466

    Article  CAS  PubMed  Google Scholar 

  95. Hernández-Gea V et al (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142(4):938–946

    Article  PubMed  Google Scholar 

  96. Boyer A et al (2014) The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. J Biol Chem 289(27):18904–18913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hourioux C et al (2007) Core protein domains involved in hepatitis C virus-like particle assembly and budding at the endoplasmic reticulum membrane. Cell Microbiol 9(4):1014–1027

    Article  CAS  PubMed  Google Scholar 

  98. Roingeard P et al (2008) Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem Cell Biol 130(3):561–566

    Article  CAS  PubMed  Google Scholar 

  99. McLauchlan J et al (2002) Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21(15):3980–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Herker E et al (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16(11):1295–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vogt DA et al (2013) Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog 9(4):e1003302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Salloum S et al (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9(8):e1003513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Roingeard P, Hourioux CJ (2008) Hepatitis C virus core protein, lipid droplets and steatosis. J Viral Hepat 15(3):157–164

    Article  CAS  PubMed  Google Scholar 

  104. Roy PS, Saikia BJ (2016) Cancer and cure: a critical analysis. Indian J Cancer 53(3):441–442

    Article  CAS  PubMed  Google Scholar 

  105. Petan T, Jarc E, Jusović M (2018) Lipid droplets in cancer: guardians of fat in a stressful world. Molecules 23(8):1941

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40(2):323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Koizume S, Miyagi YJ (2016) Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci 17(9):1430

    Article  PubMed  PubMed Central  Google Scholar 

  108. Röhrig F, Schulze A (2016) The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 16(11):732–749

    Article  PubMed  Google Scholar 

  109. Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13(4):227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zaidi N et al (2013) Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res 52(4):585–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Currie E et al (2013) Cellular fatty acid metabolism and cancer. Cell Metabol 18(2):153–161

    Article  CAS  Google Scholar 

  112. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Article  CAS  PubMed  Google Scholar 

  113. Beloribi-Djefaflia S, Vasseur S, Guillaumond FJO (2016) Lipid metabolic reprogramming in cancer cells. Oncogenesis 5(1):e189–e189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Degenhardt K et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell 10(1):51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yazdani HO, Huang H, Tsung A (2019) Autophagy: dual response in the development of hepatocellular carcinoma. Cells 8(2):91

  116. Gómez de Cedrón M, Ramírez de Molina A (2016) Microtargeting cancer metabolism: opening new therapeutic windows based on lipid metabolism. J Lipid Res 57(2):193–206

  117. Lu GD et al (2015) CCAAT/enhancer binding protein α predicts poorer prognosis and prevents energy starvation-induced cell death in hepatocellular carcinoma. Hepatology 61(3):965–978

    Article  CAS  PubMed  Google Scholar 

  118. Zhao T et al (2015) Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal(−/−) mice. Oncogene 34(15):1938–1948

    Article  CAS  PubMed  Google Scholar 

  119. Du H et al (2015) Hepatocyte-specific expression of human lysosome acid lipase corrects liver inflammation and tumor metastasis in lal(−/−) mice. Am J Pathol 185(9):2379–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mukhopadhyay S et al (2017) ATG14 facilitated lipophagy in cancer cells induce ER stress mediated mitoptosis through a ROS dependent pathway. Free Radic Biol Med 104:199–213

    Article  CAS  PubMed  Google Scholar 

  121. Steffan JJ et al (2014) Supporting a role for the GTPase Rab7 in prostate cancer progression. PLoS One 9(2):e87882

    Article  PubMed  PubMed Central  Google Scholar 

  122. Anthony PP et al (1978) The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol 31(5): 395–414

  123. Rappaport AM et al (1983) The scarring of the liver acini (Cirrhosis). Tridimensional and microcirculatory considerations. Virchows Arch A Pathol Anat Histopathol 402(2):107–137

  124. Lin Y-C et al (2016) Variants in the autophagy-related gene IRGM confer susceptibility to non-alcoholic fatty liver disease by modulating lipophagy. J Hepatol 65(6):1209–1216

    Article  CAS  PubMed  Google Scholar 

  125. Chan D et al (2004) Hepatic steatosis in obese Chinese children. Int J Obes 28(10):1257–1263

    Article  CAS  Google Scholar 

  126. Tanaka S et al (2016) Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64(6):1994–2014

    Article  CAS  PubMed  Google Scholar 

  127. Ma D et al (2013) Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol Endocrinol 27(10):1643–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee S et al (2017) Dysregulated expression of proteins associated with ER stress, autophagy and apoptosis in tissues from nonalcoholic fatty liver disease. Oncotarget 8(38):63370

    Article  PubMed  PubMed Central  Google Scholar 

  129. Carotti S et al (2020) Lipophagy impairment is associated with disease progression in NAFLD. Front Physiol 11:850

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fukushima H et al (2018) Formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease. Hepatol Res 48(9):757–767

    Article  CAS  PubMed  Google Scholar 

  131. Fukuo Y et al (2014) Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res 44(9):1026–1036

    Article  CAS  PubMed  Google Scholar 

  132. Liao X et al (2018) LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway. Mol Cell Endocrinol 470:160–167

    Article  CAS  PubMed  Google Scholar 

  133. Ma SY et al (2020) Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD. Liver Int 40(10):2427–2438

    Article  CAS  PubMed  Google Scholar 

  134. Jansen JC et al (2016) CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 98(2):310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rujano MA et al (2017) Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J Exp Med 214(12):3707–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jansen E et al (2016) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7:11600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Serio MC (2019) Mutations in V-ATPase assembly factors cause Congenital Disorder of Glycosylation (CDG) with autophagic liver disease. Université Sorbonne Paris Cité

  138. Liu H-Y et al (2009) Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 284(45):31484–31492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yang L et al (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11(6):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hur JH et al (2016) Phospholipase D1 deficiency in mice causes nonalcoholic fatty liver disease via an autophagy defect. Sci Rep 6(1):1–13

    Article  Google Scholar 

  141. Wang C et al (2017) Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat Commun 8(1):1–14

    Article  Google Scholar 

  142. Lim H et al (2018) A novel autophagy enhancer as a therapeutic agent against metabolic syndrome and diabetes. Nat Commun 9(1):1–14

    Article  Google Scholar 

  143. Kim SH et al (2017) Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13(10):1767–1781

    Article  PubMed  PubMed Central  Google Scholar 

  144. Liu C et al (2018) Celecoxib alleviates nonalcoholic fatty liver disease by restoring autophagic flux. Sci Rep 8(1):1–10

    Google Scholar 

  145. Chen J et al (2011) Celecoxib attenuates liver steatosis and inflammation in non-alcoholic steatohepatitis induced by high-fat diet in rats. Mol Med Rep 4(5):811–816

    CAS  PubMed  Google Scholar 

  146. Cun W, Jiang J, Luo G (2010) The C-terminal α-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus. J Virol 84(21):11532–11541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang S et al (2012) Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33. J Gen Virol 93(1):83–92

    Article  CAS  PubMed  Google Scholar 

  148. Ghosh S et al (2020) Interactions between viperin, vesicle-associated membrane protein A, and Hepatitis C virus protein NS5A modulate viperin activity and NS5A degradation. Biochemistry 59(6):780–789

    Article  CAS  PubMed  Google Scholar 

  149. Lassen S et al (2019) Perilipin-2 is critical for efficient lipoprotein and hepatitis C virus particle production. J Cell Sci 132(1):jcs217042

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BN, MBK MUK, MR, SHE, HF, and SA collected the data, created the Tables, and wrote the manuscript; BN, MBK, MUK, and SHE, AA, AA draw the figures. MBK, SHE, and MR proofread the review and help out in improving the manuscript; MBK, MHA, and NS proposed the idea, supervised, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Muhammad Babar Khawar, Muddasir Hassan Abbasi or Nadeem Sheikh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

This review article is not involved in personal information and ethical approval is not required.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazeer, B., Khawar, M.B., Khalid, M.U. et al. Emerging role of lipophagy in liver disorders. Mol Cell Biochem 479, 1–11 (2024). https://doi.org/10.1007/s11010-023-04707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04707-1

Keywords

Navigation