Skip to main content

Advertisement

Log in

Male or female sex: considerations and translational aspects in diabetic foot ulcer research using rodent models

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Treatment of nonhealing diabetic foot ulcers (DFUs) is a major clinical concern and challenge for clinicians. Despite the advancement in treatment strategies, there is no definitive treatment for complicated nonhealing DFUs. Animal models are crucial for understanding pathogenesis and investigating novel therapeutic small molecules and the rodent model is commonly used for research related to cutaneous wound healing. Sexual dimorphism and its effect on the efficacy of sex hormones in enhancing healing in cutaneous wounds using a rodent model have been discussed, however, there is a lack of data related to diabetic foot ulcers. Further, the effects of sexual dimorphism on the issues related to induction of diabetes, differential immune response, type and size of the wound, the effectiveness of topical versus systemic treatment, and molecular mechanisms involved in wound healing like hemostasis, granulation tissue formation, the response of keratinocytes and fibroblasts, inflammation, and skin anatomy are scarcely discussed. Understanding these aspects is of significance and will help in choosing the correct sex, species, and strain of rodents while investigating therapeutic small molecules for DFUs. This review critically summarized these issues and their translational aspects followed by highlighting the effect of sexual dimorphism on these important aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509(7500):282–283

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rich-Edwards JW, Kaiser UB, Chen GL, Manson JE, Goldstein JM (2018) Sex and Gender Differences Research Design for Basic, Clinical, and Population Studies: Essentials for Investigators. Endocr Rev 39(4):424–439. https://doi.org/10.1210/er.2017-00246

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rai V, Moellmer R, Agrawal DK (2022) Clinically relevant experimental rodent models of diabetic foot ulcer. Mol Cell Biochem 477(4):1239–1247. https://doi.org/10.1007/s11010-022-04372-w

    Article  CAS  PubMed  Google Scholar 

  4. Kong BY, Haugh IM, Schlosser BJ, Getsios S, Paller AS (2016) Mind the gap: sex bias in basic skin research. J Investig Dermatol 136(1):12–14

    Article  CAS  PubMed  Google Scholar 

  5. Yazdanpanah L, Shahbazian H, Nazari I, Arti HR, Ahmadi F, Mohammadianinejad SE et al (2018) Incidence and Risk Factors of Diabetic Foot Ulcer: A Population-Based Diabetic Foot Cohort (ADFC Study)-Two-Year Follow-Up Study. Int J Endocrinol. 2018:7631659. https://doi.org/10.1155/2018/7631659

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rai V, Moellmer R, Agrawal DK (2022) The role of CXCL8 in chronic nonhealing diabetic foot ulcers and phenotypic changes in fibroblasts: a molecular perspective. Mol Biol Rep 49(2):1565–1572. https://doi.org/10.1007/s11033-022-07144-3

    Article  CAS  PubMed  Google Scholar 

  7. Ashcroft GS, Mills SJ (2002) Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest 110(5):615–624. https://doi.org/10.1172/JCI15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilliver SC, Ashworth JJ, Mills SJ, Hardman MJ, Ashcroft GS (2006) Androgens modulate the inflammatory response during acute wound healing. J Cell Sci 119(4):722–732. https://doi.org/10.1242/jcs.02786

    Article  CAS  PubMed  Google Scholar 

  9. Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS et al (1997) Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med 3(11):1209–1215. https://doi.org/10.1038/nm1197-1209

    Article  CAS  PubMed  Google Scholar 

  10. Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW (1999) Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol 155(4):1137–1146. https://doi.org/10.1016/S0002-9440(10)65217-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanda N, Watanabe S (2005) Regulatory roles of sex hormones in cutaneous biology and immunology. J Dermatol Sci 38(1):1–7. https://doi.org/10.1016/j.jdermsci.2004.10.011

    Article  CAS  PubMed  Google Scholar 

  12. Taylor RJ, Taylor AD, Smyth JV (2002) Using an artificial neural network to predict healing times and risk factors for venous leg ulcers. J Wound Care 11(3):101–105. https://doi.org/10.12968/jowc.2002.11.3.26381

    Article  CAS  PubMed  Google Scholar 

  13. Engeland CG, Bosch JA, Cacioppo JT, Marucha PT (2006) Mucosal wound healing: the roles of age and sex. Arch Surg 141(12):1193–1197. https://doi.org/10.1001/archsurg.141.12.1193

    Article  PubMed  Google Scholar 

  14. Engeland CG, Sabzehei B, Marucha PT (2009) Sex hormones and mucosal wound healing. Brain Behav Immun 23(5):629–635. https://doi.org/10.1016/j.bbi.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  15. Ashcroft GS (2004) Sex differences in wound healing Advances in molecular and cell biology. Elsevier, Amsterdam, pp 321–328

    Google Scholar 

  16. Marucha PT, Engeland CG, Cacioppo JT (2004) 075 Wound healing is delayed in women and in the aged: A potential role for the HPA axis. Wound Repair and Regen 12(2):A21–A21. https://doi.org/10.1111/j.1067-1927.2004.0abstractbv.x

  17. Hardman MJ, Ashcroft GS (2008) Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly. Genome Biol 9(5):R80. https://doi.org/10.1186/gb-2008-9-5-r80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang SB, Hu KM, Seamon KJ, Mani V, Chen Y, Gronert K (2012) Estrogen negatively regulates epithelial wound healing and protective lipid mediator circuits in the cornea. FASEB J 26(4):1506–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhuge Y, Regueiro MM, Tian R, Li Y, Xia X, Vazquez-Padron R et al (2018) The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. J Vasc Surg 68(6):127S-S135

    Article  PubMed  Google Scholar 

  20. Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF et al (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176(5):1375–9. https://doi.org/10.1084/jem.176.5.1375

    Article  CAS  PubMed  Google Scholar 

  21. Fimmel S, Zouboulis CC (2005) Influence of physiological androgen levels on wound healing and immune status in men. Aging Male 8(3–4):166–74. https://doi.org/10.1080/13685530500233847

    Article  CAS  PubMed  Google Scholar 

  22. Gilliver SC, Ashworth JJ, Ashcroft GS (2007) The hormonal regulation of cutaneous wound healing. Clin Dermatol 25(1):56–62. https://doi.org/10.1016/j.clindermatol.2006.09.012

    Article  PubMed  Google Scholar 

  23. Shofler D, Rai V, Mansager S, Cramer K, Agrawal DK (2021) Impact of resolvin mediators in the immunopathology of diabetes and wound healing. Expert Rev Clin Immunol 17(6):681–90. https://doi.org/10.1080/1744666X.2021.1912598

    Article  CAS  PubMed  Google Scholar 

  24. Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D, Lanigan C et al (2009) A role for human skin–resident T cells in wound healing. J Exp Med 206(4):743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weinstein Y, Ran S, Segal S (1984) Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol 132(2):656–661

    Article  CAS  PubMed  Google Scholar 

  26. Ashcroft GS, Kielty CM, Horan MA, Ferguson MW (1997) Age-related changes in the temporal and spatial distributions of fibrillin and elastin mRNAs and proteins in acute cutaneous wounds of healthy humans. J Pathol 183(1):80–9. https://doi.org/10.1002/(SICI)1096-9896(199709)183:1%3c80::AID-PATH1104%3e3.0.CO;2-N.PubMedPMID:9370952

    Article  CAS  PubMed  Google Scholar 

  27. Ashcroft GS, Horan MA, Herrick SE, Tarnuzzer RW, Schultz GS, Ferguson MW (1997) Age-related differences in the temporal and spatial regulation of matrix metalloproteinases (MMPs) in normal skin and acute cutaneous wounds of healthy humans. Cell Tissue Res 290(3):581–91. https://doi.org/10.1007/s004410050963

    Article  CAS  PubMed  Google Scholar 

  28. Durbin RP (1975) Letter: Acid secretion by gastric mucous membrane. Am J Physiol 229(6):1726. https://doi.org/10.1152/ajplegacy.1975.229.6.1726

    Article  CAS  PubMed  Google Scholar 

  29. Hawiger J (1987) Formation and regulation of platelet and fibrin hemostatic plug. Hum Pathol 18(2):111–22. https://doi.org/10.1016/s0046-8177(87)80330-1

    Article  CAS  PubMed  Google Scholar 

  30. Rono B, Engelholm LH, Lund LR, Hald A (2013) Gender affects skin wound healing in plasminogen deficient mice. PLoS ONE 8(3):e59942. https://doi.org/10.1371/journal.pone.0059942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Köhlerová R, Čermáková E, Hajzlerová M (2018) Boldine does not modify gender specific wound healing in Zucker diabetic rats. Nat Prod Commun. https://doi.org/10.1177/1934578X1801301116

    Article  Google Scholar 

  32. Azzi L, El-Alfy M, Martel C, Labrie F (2005) Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. J Invest Dermatol 124(1):22–7. https://doi.org/10.1111/j.0022-202X.2004.23545.x

    Article  CAS  PubMed  Google Scholar 

  33. Misiakiewicz-Has K, Zawiślak A, Pilutin A, Kolasa-Wołosiuk A, Szumilas P, Duchnik E et al (2020) Morphological and functional changes in skin of adult male rats chronically treated with letrozole, a nonsteroidal inhibitor of cytochrome P450 aromatase. Acta Histochem Cytochem. https://doi.org/10.1267/ahc.20009

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wells MY, Voute H, Bellingard V, Fisch C, Boulifard V, George C et al (2010) Histomorphology and vascular lesions in dorsal rat skin used as injection sites for a subcutaneous toxicity study. Toxicol Pathol 38(2):258–266

    Article  PubMed  Google Scholar 

  35. Todo H (2017) Transdermal permeation of drugs in various animal species. Pharmaceutics 9(3):33

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bronaugh RL, Stewart RF, Congdon E (1983) Differences in permeability of rat skin related to sex and body site. J Soc Cosmet Chem 34(12):135

    Google Scholar 

  37. Cross S, Naylor L, Coleman R, Teo T (1995) An experimental model to investigate the dynamics of wound contraction. Br J Plast Surg 48(4):189–197

    Article  CAS  PubMed  Google Scholar 

  38. Dorsett-Martin WA (2004) Rat models of skin wound healing: a review. Wound Repair Regen 12(6):591–599

    Article  PubMed  Google Scholar 

  39. Gilliver SC, Ruckshanthi JP, Hardman MJ, Nakayama T, Ashcroft GS (2008) Sex dimorphism in wound healing: the roles of sex steroids and macrophage migration inhibitory factor. Endocrinology 149(11):5747–57. https://doi.org/10.1210/en.2008-0355

    Article  CAS  PubMed  Google Scholar 

  40. Oskouei TE, Maleki-Dizaji N, Najafi M (2009) The impact of gender on the inflammatory parameters and angiogenesis in the rat air pouch model of inflammation. Iranian J of Basic Med Sci. https://doi.org/10.22038/IJBMS.2009.5148

  41. Fitridge R, Thompson M (2011) Mechanisms of vascular disease: a reference book for vascular specialists. University of Adelaide Press, Adelaide

    Book  Google Scholar 

  42. Moretti L, Stalfort J, Barker TH, Abebayehu D (2022) The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biolo Chem. https://doi.org/10.1016/j.jbc.2021.101530

    Article  Google Scholar 

  43. Stunova A, Vistejnova L (2018) Dermal fibroblasts—A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev 39:137–150

    Article  CAS  PubMed  Google Scholar 

  44. Sun G-Q, Shi H-P, Li S, Zhang Y-J, Shi Q-W, Zhang M et al (2008) Effect of gender on rat dermal fibroblast function. J Am Coll Surg 207(3):S60

    Article  Google Scholar 

  45. Rai V, Moellmer R, Agrawal DK (2022) Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Cells. https://doi.org/10.3390/cells11152287

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rai V, Sharma P, Agrawal S, Agrawal DK (2017) Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem 424(1–2):123–45. https://doi.org/10.1007/s11010-016-2849-0

    Article  CAS  PubMed  Google Scholar 

  47. Tyagi P, Tyagi V, Yoshimura N, Witteemer E, Barclay D, Loughran PA et al (2009) Gender-based reciprocal expression of transforming growth factor-beta1 and the inducible nitric oxide synthase in a rat model of cyclophosphamide-induced cystitis. J Inflamm (Lond). https://doi.org/10.1186/1476-9255-6-23

    Article  PubMed  Google Scholar 

  48. Huxley VH, Kemp SS, Schramm C, Sieveking S, Bingaman S, Yu Y et al (2018) Sex differences influencing micro- and macrovascular endothelial phenotype in vitro. J Physiol 596(17):3929–49. https://doi.org/10.1113/JP276048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Evans R, Kuhnke JL, Burrows C, Kayssi A, Labreque C, O’Sullivan-Drombolis D et al (2019) Best practice recommendations for the prevention and management of venous leg ulcers. In: Foundations of best practice for skin and wound management. A supplement of wound care Canada. 70 pp. Retrieved from: https://www.biosanas.com.br/uploads/outros/artigos_cientificos/117/80c5ef21814cb9139da28c6ab2ab15db.pdf

  50. Brennan MB, Powell WR, Kaiksow F, Kramer J, Liu Y, Kind AJ et al (2022) Association of race, ethnicity, and rurality with major leg amputation or death among medicare beneficiaries hospitalized with diabetic foot ulcers. Jama Netw Open 5(4):e228399–e228399

    Article  PubMed  PubMed Central  Google Scholar 

  51. Saadane A, Lessieur EM, Du Y, Liu H, Kern TS (2020) Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy. PLoS ONE 15(9):e0238727. https://doi.org/10.1371/journal.pone.0238727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70(1):5–47

    Article  Google Scholar 

  53. Barriere DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K et al (2018) Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep 8(1):424. https://doi.org/10.1038/s41598-017-18896-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu J, Yan LJ (2015) Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity. Diabetes Metab Syndr Obes. 8:181–8. https://doi.org/10.2147/DMSO.S82272

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y (2017) Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med 49(2):106–116

    Article  PubMed  Google Scholar 

  56. Ohta T, Katsuda Y, Miyajima K, Sasase T, Kimura S, Tong B et al (2014) Gender differences in metabolic disorders and related diseases in spontaneously diabetic Torii-Leprfa rats. J Diabetes Res. https://doi.org/10.1155/2014/841957

    Article  PubMed  PubMed Central  Google Scholar 

  57. Díaz A, López-Grueso R, Gambini J, Monleón D, Mas-Bargues C, Abdelaziz KM et al (2019) Sex differences in age-associated type 2 diabetes in rats—Role of estrogens and oxidative stress. Oxid Med Cell Longev. https://doi.org/10.1155/2019/6734836

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim B, Kim YY, Nguyen PT-T, Nam H, Suh JG (2020) Sex differences in glucose metabolism of streptozotocin-induced diabetes inbred mice (C57BL/6J). Applied Biological Chemistry 63(1):1–8

    Article  Google Scholar 

  59. Vital P, Larrieta E, Hiriart M (2006) Sexual dimorphism in insulin sensitivity and susceptibility to develop diabetes in rats. J Endocrinol 190(2):425–32. https://doi.org/10.1677/joe.1.06596

    Article  CAS  PubMed  Google Scholar 

  60. Choi M, Choi JW, Chaudhari HN, Aseer KR, Mukherjee R, Yun JW (2013) Gender-dimorphic regulation of skeletal muscle proteins in streptozotocin-induced diabetic rats. Cell Physiol Biochem 31(2–3):408–20. https://doi.org/10.1159/000343378

    Article  CAS  PubMed  Google Scholar 

  61. Fourny N, Lan C, Bernard M, Desrois M (2021) Male and female rats have different physiological response to high-fat high-sucrose diet but similar myocardial sensitivity to ischemia-reperfusion injury. Nutrients. https://doi.org/10.3390/nu13092914

    Article  PubMed  PubMed Central  Google Scholar 

  62. Diaz A, Lopez-Grueso R, Gambini J, Monleon D, Mas-Bargues C, Abdelaziz KM et al (2019) Sex Differences in Age-Associated Type 2 Diabetes in Rats-Role of Estrogens and Oxidative Stress. Oxid Med Cell Longev 2019:6734836. https://doi.org/10.1155/2019/6734836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tian L, Nikolic-Paterson DJ, Tesch GH (2019) Establishing equivalent diabetes in male and female Nos3-deficient mice results in a comparable onset of diabetic kidney injury. Physiol Rep 7(18):e14197. https://doi.org/10.14814/phy2.14197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maric I, Krieger JP, van der Velden P, Borchers S, Asker M, Vujicic M et al (2022) Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Front Nutr 9:828522. https://doi.org/10.3389/fnut.2022.828522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A et al (2020) Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63(3):453–61. https://doi.org/10.1007/s00125-019-05040-3

    Article  PubMed  Google Scholar 

  66. Kim DJ, Mustoe T, Clark RA (2015) Cutaneous wound healing in aging small mammals: a systematic review. Wound Repair Regen. 23(3):318–39. https://doi.org/10.1111/wrr.12290

    Article  PubMed  Google Scholar 

  67. Yamashita K, Yotsuyanagi T, Yamauchi M, Young DM (2014) Klotho mice: a novel wound model of aged skin. Plast Reconstr Surg Glob Open 2(1):e101. https://doi.org/10.1097/GOX.0000000000000045

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xia W, Quan T, Hammerberg C, Voorhees JJ, Fisher GJ (2015) A mouse model of skin aging: fragmentation of dermal collagen fibrils and reduced fibroblast spreading due to expression of human matrix metalloproteinase-1. J Dermatol Sci 78(1):79–82. https://doi.org/10.1016/j.jdermsci.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  69. Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB et al (2021) Alternative animal models of aging research. Front Mol Biosci 8:660959. https://doi.org/10.3389/fmolb.2021.660959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN et al (2020) Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol 101(1–2):21–37. https://doi.org/10.1111/iep.12346

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ansell D, Marsh C, Walker L, Hardman M, Holden K (2018) Evaluating STZ-induced impaired wound healing in rats. J Invest Dermatol. https://doi.org/10.1016/j.jid.2017.10.020

    Article  PubMed  Google Scholar 

  72. Grada A, Mervis J, Falanga V (2018) Research techniques made simple: animal models of wound healing. J Invest Dermatol 138(10):2095–105. https://doi.org/10.1016/j.jid.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  73. Evans ND, Oreffo RO, Healy E, Thurner PJ, Man YH (2013) Epithelial mechanobiology, skin wound healing, and the stem cell niche. J Mech Behav Biomed Mater 28:397–409. https://doi.org/10.1016/j.jmbbm.2013.04.023

    Article  PubMed  Google Scholar 

  74. Ansell DM, Campbell L, Thomason HA, Brass A, Hardman MJ (2014) A statistical analysis of murine incisional and excisional acute wound models. Wound Repair Regen. 22(2):281–7. https://doi.org/10.1111/wrr.12148

    Article  PubMed  PubMed Central  Google Scholar 

  75. Elliot S, Wikramanayake TC, Jozic I, Tomic-Canic M (2018) A modeling conundrum: murine models for cutaneous wound healing. J Invest Dermatol 138(4):736–40. https://doi.org/10.1016/j.jid.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  76. Dai T, Kharkwal GB, Tanaka M, Huang YY, Bil de Arce VJ, Hamblin MR (2011) Animal models of external traumatic wound infections. Virulence 2(4):296–315. https://doi.org/10.4161/viru.2.4.16840

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mukai K, Horike SI, Meguro-Horike M, Nakajima Y, Iswara A, Nakatani T (2022) Topical estrogen application promotes cutaneous wound healing in db/db female mice with type 2 diabetes. PLoS ONE 17(3):e0264572. https://doi.org/10.1371/journal.pone.0264572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Campbell L, Emmerson E, Davies F, Gilliver SC, Krust A, Chambon P et al (2010) Estrogen promotes cutaneous wound healing via estrogen receptor beta independent of its antiinflammatory activities. J Exp Med 207(9):1825–33. https://doi.org/10.1084/jem.20100500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Safer JD, Crawford TM, Holick MF (2005) Topical thyroid hormone accelerates wound healing in mice. Endocrinology 146(10):4425–30. https://doi.org/10.1210/en.2005-0192

    Article  CAS  PubMed  Google Scholar 

  80. Agostinho Hunt AM, Gibson JA, Larrivee CL, O’Reilly S, Navitskaya S, Needle DB et al (2017) A bioluminescent Pseudomonas aeruginosa wound model reveals increased mortality of type 1 diabetic mice to biofilm infection. J Wound Care 26(Sup7):S24–S33. https://doi.org/10.12968/jowc.2017.26.Sup7.S24

    Article  CAS  PubMed  Google Scholar 

  81. Ozkaya H, Omma T, Bag YM, Uzunoglu K, Isildak M, Duymus ME et al (2019) Topical and systemic effects of N-acetyl cysteine on wound healing in a diabetic rat model. Wounds 31(4):91–96

    PubMed  Google Scholar 

  82. Ito D, Ito H, Ideta T, Kanbe A, Ninomiya S, Shimizu M (2021) Systemic and topical administration of spermidine accelerates skin wound healing. Cell Commun Signal 19(1):36. https://doi.org/10.1186/s12964-021-00717-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Galeano M, Polito F, Bitto A, Irrera N, Campo GM, Avenoso A et al (2011) Systemic administration of high-molecular weight hyaluronan stimulates wound healing in genetically diabetic mice. Biochim Biophys Acta 1812(7):752–9. https://doi.org/10.1016/j.bbadis.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  84. Vagesjo E, Ohnstedt E, Mortier A, Lofton H, Huss F, Proost P et al (2018) Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc Natl Acad Sci U S A 115(8):1895–900. https://doi.org/10.1073/pnas.1716580115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ohnstedt E, Lofton Tomenius H, Frank P, Roos S, Vagesjo E, Phillipson M (2022) Accelerated wound healing in minipigs by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14020229

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yan J, Liang J, Cao Y, El Akkawi MM, Liao X, Chen X et al (2021) Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds. Stem Cell Res Ther 12(1):220. https://doi.org/10.1186/s13287-021-02288-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ohnstedt E, Lofton Tomenius H, Vagesjo E, Phillipson M (2019) The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov 14(5):485–97. https://doi.org/10.1080/17460441.2019.1588879

    Article  CAS  PubMed  Google Scholar 

  88. Whittam AJ, Maan ZN, Duscher D, Wong VW, Barrera JA, Januszyk M et al (2016) Challenges and opportunities in drug delivery for wound healing. Adv Wound Care (New Rochelle). 5(2):79–88. https://doi.org/10.1089/wound.2014.0600

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bilgic T (2021) Comparison of the effect of local and systemic injection of resveratrol on cutaneous wound healing in rats. Int J Low Extrem Wounds 20(1):55–9. https://doi.org/10.1177/1534734620938168

    Article  CAS  PubMed  Google Scholar 

  90. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG et al (2012) 2012 Infectious diseases society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54(12):e132-73. https://doi.org/10.1093/cid/cis346

    Article  PubMed  Google Scholar 

  91. Tatara AM, Shah SR, Livingston CE, Mikos AG (2015) Infected animal models for tissue engineering. Methods 84:17–24. https://doi.org/10.1016/j.ymeth.2015.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rippon MG, Westgate S, Rogers AA (2022) Implications of endotoxins in wound healing: a narrative review. J Wound Care 31(5):380–392

    Article  PubMed  Google Scholar 

  93. Mouritzen MV, Petkovic M, Qvist K, Poulsen SS, Alarico S, Leal EC et al (2021) Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota. Molecular Therapy-Methods & Clinical Development 20:726–739

    Article  CAS  Google Scholar 

  94. Casqueiro J, Casqueiro J, Alves C (2012) Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J Endocrinol Metab. 16(1):S27-36. https://doi.org/10.4103/2230-8210.94253

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kosyreva AM, Dzhalilova DS, Makarova OV, Tsvetkov IS, Zolotova NA, Diatroptova MA et al (2020) Sex differences of inflammatory and immune response in pups of Wistar rats with SIRS. Sci Rep 10(1):1–14

    Article  Google Scholar 

  96. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638

    Article  CAS  PubMed  Google Scholar 

  97. Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW (2011) Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118(22):5918–27. https://doi.org/10.1182/blood-2011-03-340281

    Article  CAS  PubMed  Google Scholar 

  98. Fedulova LV, Basov AA, Vasilevskaya ER, Dzhimak SS (2019) Gender difference response of male and female immunodeficiency rats treated with tissue-specific biomolecules. Curr Pharm Biotechnol 20(3):245–53. https://doi.org/10.2174/1389201020666190222184814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kay E, Gomez-Garcia L, Woodfin A, Scotland RS, Whiteford JR (2015) Sexual dimorphisms in leukocyte trafficking in a mouse peritonitis model. J Leukoc Biol 98(5):805–17. https://doi.org/10.1189/jlb.3A1214-601RR

    Article  CAS  PubMed  Google Scholar 

  100. Kosyreva AM, Makarova OV, Kakturskiy LV, Mikhailova LP, Boltovskaya MN, Rogov KA (2018) Sex differences of inflammation in target organs, induced by intraperitoneal injection of lipopolysaccharide, depend on its dose. J Inflamm Res 11:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lu RJ, Taylor S, Contrepois K, Kim M, Bravo JI, Ellenberger M et al (2021) Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex-and age-related functional regulation. Nature aging 1(8):715–733

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tawfik VL, Huck NA, Baca QJ, Ganio EA, Haight ES, Culos A et al (2020) Systematic immunophenotyping reveals sex-specific responses after painful injury in mice. Front Immunol 11:1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Adib Y, Bensussan A, Michel L (2022) Cutaneous wound healing: a review about innate immune response and current therapeutic applications. Mediators Inflamm 2022:5344085. https://doi.org/10.1155/2022/5344085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738

    Article  CAS  PubMed  Google Scholar 

  105. Berridge BR (2021) Animal Study Translation: The Other Reproducibility Challenge. Oxford University Press

    Google Scholar 

  106. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–5. https://doi.org/10.1038/nrd1470

    Article  CAS  PubMed  Google Scholar 

  107. Leenaars CHC, Kouwenaar C, Stafleu FR, Bleich A, Ritskes-Hoitinga M, De Vries RBM et al (2019) Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med 17(1):223. https://doi.org/10.1186/s12967-019-1976-2

    Article  PubMed  PubMed Central  Google Scholar 

  108. Leenaars C, Teerenstra S, Meijboom F, Bleich A (2022) Predicting animal to human translation: A proof of concept study using qualitative comparative analysis. medRxiv. https://doi.org/10.1101/2022.01.31.22270227

    Article  Google Scholar 

Download references

Acknowledgements

None

Funding

VR is supported by an intramural grant IMR Rai 12397B from the Western University of Health Sciences, Pomona, California. The research work of DKA is supported by the R01 HL144125 and R01 HL147662 grants from the National Institutes of Health, USA. The content of this critical review is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Western University of Health Sciences,IMR Rai 12397B,National Institutes of Health,R01 HL144125,R01HL147662

Author information

Authors and Affiliations

Authors

Contributions

VR: conceptualized and wrote the initial draft, DKA: critically reviewed and edited the manuscript, VR and DKA: finalized the manuscript.

Corresponding author

Correspondence to Vikrant Rai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

All the authors have no conflict of interest and have read the journal’s authorship statement.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, V., Agrawal, D.K. Male or female sex: considerations and translational aspects in diabetic foot ulcer research using rodent models. Mol Cell Biochem 478, 1835–1845 (2023). https://doi.org/10.1007/s11010-022-04642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04642-7

Keywords

Navigation