Skip to main content

Advertisement

Log in

Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The cellular prion protein (PrPC), in its native conformation, performs numerous cellular and cognitive functions in brain tissue. However, despite the cellular prion research in recent years, there are still questions about its participation in oxidative and neurodegenerative processes. This study aims to elucidate the involvement of PrPC in the neuroprotection cascade in the presence of oxidative stressors. For that, astrocytes from wild-type mice and knockout to PrPC were subjected to the induction of oxidative stress with hydrogen peroxide (H2O2) and with the toxic oligomer of the amyloid β protein (AβO). We observed that the presence of PrPC showed resistance in the cell viability of astrocytes. It was also possible to monitor changes in basic levels of metals and associate them with an induced damage condition, indicating the precise role of PrPC in metal homeostasis, where the absence of PrPC leads to metallic unbalance, culminating in cellular vulnerability to oxidative stress. Increased caspase 3, p-Tau, p53, and Bcl2 may establish a relationship between a PrPC and an induced damage condition. Complementarily, it has been shown that PrPC prevents the internalization of AβO and promotes its degradation under oxidative stress induction, thus preventing protein aggregation in astrocytes. It was also observed that the presence of PrPC can be related to translocating SOD1 to cell nuclei under oxidative stress, probably controlling DNA damage. The results of this study suggest that PrPC acts against oxidative stress activating the cellular response and defense by displaying neuroprotection to neurons and ensuring the functionality of astrocytes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are provided under request.

References

  1. Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728

    Article  CAS  PubMed  Google Scholar 

  2. Poggiolini I, Saverioni D, Parchi P. (2013) Prion protein misfolding, strains, and neurotoxicity : an update from studies on mammalian prions. Int J Cell Biol. 2013: 910314

  3. Roland R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382:180–182

    Article  Google Scholar 

  4. Sakudo A, Xue G, Kawashita N, Ano Y, Takagi T, Shintani H et al (2010) Structure of the prion protein and its gene : an analysis using bioinformatics and computer simulation. Curr Protein Pept Sci 11:166–179

    Article  CAS  PubMed  Google Scholar 

  5. Adle-biassette H, Verney C, Peoc K, Gressens P, Budka H, Henin D (2006) Immunohistochemical expression of prion protein ( PrPC ) in the human forebrain during development. J Neuropathol Exp Neurol 65(7):698–706

    Article  CAS  PubMed  Google Scholar 

  6. Hartmann CA, Martins VR, Lima FRS (2013) High levels of cellular prion protein improve astrocyte development. FEBS Lett 587(2):238–244

    Article  CAS  PubMed  Google Scholar 

  7. Guillamón-Vivancos T, Gómez-Pinedo U, Matías-Guiu J (2015) Astrocytes in neurodegenerative diseases (I): function and molecular description. Neurol (English Ed) 30(2):119–129

    Article  Google Scholar 

  8. Bélanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–296

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bylicky MA, Mueller GP, Day RM (2018) Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev 2018:6501031

    Article  PubMed  PubMed Central  Google Scholar 

  10. Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR et al (1994) Prion protein is necessary for normal synaptic function. Lett Nat 370:295–297

    Article  CAS  Google Scholar 

  11. Llorens F, Del Río JA (2012) Unraveling the neuroprotective mechanisms of PrPC in excitotoxicity. Prion 6(3):245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amin L, Nguyen XTA, Rolle IG, D’Este E, Giachin G, Tran TH et al (2016) Characterization of prion protein function by focal neurite stimulation. J Cell Sci 129(20):3878–3891

    CAS  PubMed  Google Scholar 

  13. Bertuchi FR, Bourgeon DMG, Landemberger MC, Martins VR, Cerchiaro G (2012) PrPC displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrP C knockout mice. Biochem Biophys Res Commun 418(1):27–32

    Article  CAS  PubMed  Google Scholar 

  14. Bravard A, Auvré F, Fantini D, Bernardino-Sgherri J, Sissoëff L, Daynac M, Xu Z, Etienne O, Dehen C, Comoy E, Boussin F, Tell G, Deslys J, Radicella J (2015) The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 43(2):904–916

    Article  PubMed  Google Scholar 

  15. Gourdain P, Ballerini C, Nicot AB, Carnaud C (2012) Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: Evidence for a critical role of the central nervous system. J Neuroinflammation. https://doi.org/10.1186/1742-2094-9-25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jarosz-Griffiths HH, Corbett NJ, Rowland HA, Fisher K, Jones AC, Baron J et al (2019) Proteolytic shedding of the prion protein via activation of metallopeptidase ADAM10 reduces cellular binding and toxicity of amyloid-β oligomers. J Biol Chem 294(17):7085–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parrie LE, Crowell JAE, Moreno JA, Suinn SS, Telling GC, Bessen RA (2020) The cellular prion protein promotes neuronal regeneration after acute nasotoxic injury. Prion 14(1):31–41

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marques CMS, Pedron T, Batista BL, Cerchiaro G (2021) Cellular prion protein activates Caspase 3 for apoptotic defense mechanism in astrocytes. Mol Cell Biochem 476(5):2149–2158

    Article  CAS  PubMed  Google Scholar 

  19. Ashok A, Singh N (2018) Prion protein modulates glucose homeostasis by altering intracellular iron. Sci Rep 8(1):1–15

    Article  CAS  Google Scholar 

  20. Choi CJ, Kanthasamy A, Anantharam V, Kanthasamy AG (2006) Interaction of metals with prion protein : possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology 27:777–787

    Article  CAS  PubMed  Google Scholar 

  21. Krebs B, Wiebelitz A, Balitzki-korte B, Vassallo N, Paluch S, Mitteregger G et al (2007) Cellular prion protein modulates the intracellular calcium response to hydrogen peroxide. J Neurochem 100:358–367

    Article  CAS  PubMed  Google Scholar 

  22. Singh A, Haldar S, Horback K, Tom C, Zhou L, Singh N (2013) Prion protein regulates iron transport by functioning as a ferrireductase. J Alzheimers Dis 35(3):541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wulf M, Senatore A, Aguzzi A (2017) The biological function of the cellular prion protein : an update. BMC Biol 15(34):1–13

    Google Scholar 

  24. Rachidi W, Vilette D, Guiraud P, Arlotto M, Riondel J, Laude H et al (2003) Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem 278(11):9064–9072

    Article  CAS  PubMed  Google Scholar 

  25. Paterson AWJ, Curtis JC, MacLeod NK (2008) Complex I specific increase in superoxide formation and respiration rate by PrP-null mouse brain mitochondria. J Neurochem 105(1):177–191

    Article  CAS  PubMed  Google Scholar 

  26. Brown DR, Schulz-schaeffer WJ, Schmidt B, Kretzschmar HA (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 112(146):104–112

    Article  Google Scholar 

  27. Brown DR, Clive C, Haswell SJ (2001) Antioxidant activity related to copper binding of native prion protein. J Neurochem 76(1):69–76

    Article  CAS  PubMed  Google Scholar 

  28. Brown DR, Wong B-S, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walsh DM, Selkoe DJ (2007) Aβ oligomers–a decade of discovery. J Neurochem 101(5):1172–1184

    Article  CAS  PubMed  Google Scholar 

  30. Schwarze-Eicker K, Keyvani K, Görtz N, Westaway D, Sachser N, Paulus W (2005) Prion protein (PrPc) promotes β-amyloid plaque formation. Neurobiol Aging 26(8):1177–1182

    Article  CAS  PubMed  Google Scholar 

  31. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-Β oligomers. Nature 457(7233):1128–1132

    Article  PubMed  PubMed Central  Google Scholar 

  32. Voigtländer T, Klöppel S, Birner P, Jarius C, Flicker H, Verghese-Nikolakaki S et al (2001) Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases. Acta Neuropathol 101(5):417–423

    Article  PubMed  Google Scholar 

  33. Kellett KAB, Hooper NM (2009) Prion protein and Alzheimer disease. Prion 3(4):190–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salazar SV, Strittmatter SM (2017) Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer’s disease. Biochem Biophys Res Commun 483(4):1143–1147

    Article  CAS  PubMed  Google Scholar 

  35. Brody AH, Strittmatter SM (2018) Synaptotoxic signaling by amyloid beta oligomers in Alzheimer’s disease through prion protein and mGluR5 A.H. Adv Pharmacol 182(1):293–323

    Article  Google Scholar 

  36. Purro SA, Nicoll AJ, Collinge J (2018) Prion protein as a toxic acceptor of amyloid-β oligomers. Biol Psychiatry 83(4):358–368

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-β (Aβ) oligomers: role of N-terminal residues. J Biol Chem 285(34):26377–26383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V (2022) Prions and neurodegenerative diseases: a focus on Alzheimer’s disease. J Alzheimer’s Dis 85(2):503–518

    Article  CAS  Google Scholar 

  39. Liu S, Li S, Lin J, Li J, Yang H (2022) Aptamer-induced-dimerization strategy attenuates AβO toxicity through modulating the trophic activity of PrPCsignaling. J Am Chem Soc 144(21):9264–9270

    Article  CAS  PubMed  Google Scholar 

  40. Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC et al (2007) Cellular prion protein regulates β-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci USA 104(26):11062–11067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Griffiths HH, Whitehouse IJ, Hooper NM (2012) Regulation of amyloid-β production by the prion protein. Prion 6(3):2885–2895

    Article  Google Scholar 

  42. Pan T, Wong BS, Liu T, Li R, Petersen RB, Sy MS (2002) Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 368(1):81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forloni G, Balducci C (2011) β-amyloid oligomers and prion protein: fatal attraction? Prion 5(1):10–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E et al (2010) Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 107(5):2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R, Falsig J et al (2010) Prion protein and Ab-related synaptic toxicity impairment. EMBO Mol Med 2(8):306–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nieznanski K, Surewicz K, Chen S, Nieznanska H, Surewicz WK (2014) Interaction between prion protein and Aβ amyloid fibrils revisited. ACS Chem Neurosci 5(5):340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castle AR, Gill AC, Jackson WS (2017) Physiological functions of the cellular prion protein. Front Mol Biosci 4(April):1–25

    Google Scholar 

  48. Vergara C, Ordóñez-Gutiérrez L, Wandosell F, Ferrer I, del Río JA, Gavín R (2015) Role of PrPC expression in tau protein levels and phosphorylation in alzheimer’s disease evolution. Mol Neurobiol 51(3):1206–1220

    Article  CAS  PubMed  Google Scholar 

  49. Linden R (2017) The biological function of the prion protein: a cell surface scaffold of signaling modules. Front Mol Neurosci 10(March):1–19

    Google Scholar 

  50. Onodera T (2017) Dual role of cellular prion protein in normal host and alzheimer’s disease. Proc Japan Acad Ser B Phys Biol Sci 93(4):155–173

    Article  CAS  Google Scholar 

  51. Arantes C, Nomizo R, Lopes MH, Hajj GNM, Lima FRS, Martins VR (2008) Prion protein and its ligand stress inducible protein 1 regulate astrocyte development. Glia 2009(1449):1439–1449

    Google Scholar 

  52. Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp H, DeArmond S et al (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 359:710–713

    Google Scholar 

  53. Lima FRS, Arantes CP, Muras AG, Nomizo R, Brentani RR, Martins VR (2007) Cellular prion protein expression in astrocytes modulates neuronal survival and differentiation. J Neurochem 103(6):2164–2176

    Article  CAS  PubMed  Google Scholar 

  54. Martins VR, Linden R, Prado MAM, Walz R, Sakamoto AC, Izquierdo I et al (2002) Cellular prion protein: on the road for functions. FEBS Lett 512(1–3):25–28

    Article  CAS  PubMed  Google Scholar 

  55. Jalonen TO, Charniga CJ, Wielt DB (1997) β-Amyloid peptide-induced morphological changes coincide with increased K+ and Cl- channel activity in rat cortical astrocytes. Brain Res 746(1–2):85–97

    Article  CAS  PubMed  Google Scholar 

  56. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77(6):817–827

    Article  CAS  PubMed  Google Scholar 

  57. Zeng L, Zou W, Wang G (2015) Cellular prion protein (PrPC) and its role in stress responses. Int J Clin Exp Med 8(5):8042–8050

    PubMed  PubMed Central  Google Scholar 

  58. Liang J, Fl G, Yy L, Wang J, Hh Z, Lp Y et al (2005) Review article : role of PrPc related to apoptosis. EXCLI J 2006(5):11–24

    Google Scholar 

  59. Dringen R, Scheiber I, Bulcke F (2015) Copper metabolism of astrocytes. Springerplus 4(March):1–32

    Google Scholar 

  60. Salzano G, Giachin G, Legname G (2019) Structural consequences of copper binding to the prion protein. Cells 8(8):770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Angelova M, Asenova S, Nedkova V (2011) Copper in the human organism. Mol Biol Int 9(1):88–98

    Google Scholar 

  62. Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7(3):103–108

    Article  CAS  PubMed  Google Scholar 

  63. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  64. Singh N (2014) The role of iron in prion disease and other neurodegenerative diseases. PLOS Pathog 10(9):9–11

    Article  Google Scholar 

  65. Adlard PA, Bush AI (2018) Metals and alzheimer’s disease: how far have we come in the clinic? J Alzheimer’s Dis 62(3):1369–1379

    Article  Google Scholar 

  66. Wong BX, Duce JA (2014) The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5:1–10

    Article  CAS  Google Scholar 

  67. Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffmann A et al (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48(2):145–155

    Article  PubMed  Google Scholar 

  68. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in alzheimer’s disease. Nat Rev Neurosci 3(11):862–872

    Article  CAS  PubMed  Google Scholar 

  69. Morris GP, Clark IA, Zinn R, Vissel B (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53

    Article  CAS  PubMed  Google Scholar 

  70. Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772(6):629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corbett GT, Wang Z, Hong W, Colom-Cadena M, Rose J, Liao M et al (2020) PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol 139(3):503–526

    Article  CAS  PubMed  Google Scholar 

  72. Lee JKH, Pearson JD, Maser BE, Ingham RJ (2013) Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity. J Biol Chem 288(30):21482–21495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohno Y, Koizumi M, Nakayama H, Watanabe T, Hirooka M, Tokumoto Y et al (2017) Downregulation of ANP32B exerts antiapoptotic effects in hepatocellular carcinoma. PLoS ONE 12(5):1–17

    Article  Google Scholar 

  74. Belmokhtar CA, Hillion J, Segal-Bendirdjian E (2001) Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 107(20):3354–3362

    Article  Google Scholar 

  75. Simenc J, Lipnik-Stangelj M (2012) Staurosporine induces different cell death forms in cultured rat astrocytes. Radiol Oncol 46(4):312–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rubenstein R, Chang B, Yue JK, Chiu A, Winkler EA, Puccio AM et al (2017) Comparing plasma phospho tau, total tau, and phospho tau–total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol 74(9):1063–1072

    Article  PubMed  PubMed Central  Google Scholar 

  77. Meeter LHH, Vijverberg EG, Del Campo M, Rozemuller AJM, Donker Kaat L, de Jong FJ et al (2018) Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology. https://doi.org/10.1212/WNL.0000000000005261

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dantas LS, Chaves-Filho AB, Coelho FR, Genaro-Mattos TC, Tallman KA, Porter NA et al (2018) Cholesterol secosterol aldehyde adduction and aggregation of Cu, Zn-superoxide dismutase: Potential implications in ALS. Redox Biol 19:105–115. https://doi.org/10.1016/j.redox.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Foley AR, Roseman GP, Chan K, Smart A, Finn TS, Yang K et al (2020) Evidence for aggregation-independent, PrPC-mediated Aβ cellular internalization. Proc Natl Acad Sci USA 117(46):28625–28631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mcllwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656

  81. Roucou X, Giannopoulos PN, Zhang Y, Jodoin J, Goodyer CG, LeBlanc A (2005) Cellular prion protein inhibits proapoptotic bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ 12(7):783–795

    Article  CAS  PubMed  Google Scholar 

  82. Brown DR, Besinger A (1998) Prion protein expression and superoxide dismutase activity. Biochem J 334(2):423–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher a, et al (1996) RAGE and amyloid-beta peptide neurotoxicity in alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  84. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A (2020) Role of p53 in the regulation of cellular senescence. Biomolecules 10(3):1–16

    Article  Google Scholar 

  85. Turnquist C, Horikawa I, Foran E, Major EO, Vojtesek B, Lane DP et al (2016) P53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ 23(9):1515–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689

    Article  CAS  PubMed  Google Scholar 

  87. Grad LI, Cashman NR (2014) Prion-like activity of Cu/Zn superoxide dismutase Implications for amyotrophic lateral sclerosis. Prion 8(1):33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McBean GJ (2017) Cysteine, glutathione, and thiol redox balance in astrocytes. Antioxidants 6(3):1–13

    Article  Google Scholar 

  89. Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E (2019) Astrocytic oxidative/nitrosative stress contributes to Parkinson’s disease pathogenesis: the dual role of reactive astrocytes. Antioxidants 8(8):265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anantharam V, Kanthasamy A, Choi CJ, Martin DP, Latchoumycandane C, Richt JA et al (2008) Opposing roles of prion protein in oxidative stress- and ER stress-induced apoptotic signaling. Free Radic Biol Med 45(11):1530–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75(2):153–161

    Article  CAS  PubMed  Google Scholar 

  92. Klamt F, Dal-Pizzol F, Conte Da Frota ML, Walz R, Andrades ME, Da Silva EG et al (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med 30(10):1137–1144

    Article  CAS  PubMed  Google Scholar 

  93. Senator A, Rachidi W, Lehmann S, Favier A, Benboubetra M (2004) Prion protein protects against DNA damage induced by paraquat in cultured cells. Free Radic Biol Med 37(8):1224–1230

    Article  CAS  PubMed  Google Scholar 

  94. Brown DR (2004) Role of the prion protein in copper turnover in astrocytes. Neurobiol Dis 15(3):534–543

    Article  CAS  PubMed  Google Scholar 

  95. Hare DJ, Grubman A, Ryan TM, Lothian A, Liddell JR, Grimm R et al (2013) Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry. Metallomics 5(12):1656–1662

    Article  CAS  PubMed  Google Scholar 

  96. Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D et al (2014) brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 20(8):1324–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lazzari C, Kipanyula MJ, Agostini M, Pozzan T, Fasolato C (2015) Aβ42 oligomers selectively disrupt neuronal calcium release. Neurobiol Aging 36(2):877–885

    Article  CAS  PubMed  Google Scholar 

  99. Berridge MJ (2010) Calcium hypothesis of alzheimer disease. Signal Cell Physiol 459:441–449

    CAS  Google Scholar 

  100. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes–requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 115(Pt 6):1175–1188

    Article  CAS  PubMed  Google Scholar 

  101. Guénette SY (2003) Astrocytes: a cellular player in Aβ clearance and degradation. Trends Mol Med 9(7):279–280

    Article  PubMed  Google Scholar 

  102. Ries M, Sastre M (2016) Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 8:1–9

    Article  Google Scholar 

  103. Koger D, Malkani S, Higgs R, Hanson J, Paul SM, Bales KR et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat Med 10(7):719–726

    Article  PubMed  Google Scholar 

  104. Nielsen HM, Mulder SD, Beliën JAM, Musters RJP, Eikelenboom P, Veerhuis R (2010) Astrocytic Aβ1-42 uptake is determined by Aβ-aggregation state and the presence of amyloid-associated proteins. Glia 58(10):1235–1246

    Article  PubMed  Google Scholar 

  105. Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimer’s Dis 64(s1):S567-610

    Article  CAS  Google Scholar 

  106. Nieznanski K, Choi JK, Chen S, Surewicz K, Surewicz WK (2012) Soluble prion protein inhibits amyloid-β (Aβ) fibrillization and toxicity. J Biol Chem 287(40):33104–33108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kralovicova S, Fontaine SN, Alderton A, Alderman J, Ragnarsdottir KV, Collins SJ et al (2009) The effects of prion protein expression on metal metabolism. Mol Cell Neurosci 41(2):135–147

    Article  CAS  PubMed  Google Scholar 

  108. Millhauser GL (2007) Copper and the prion protein: methods, structures, function, and disease. Annu Rev Phys Chem 58(11):299–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tsang CK, Liu Y, Thomas J, Zhang Y, Zheng XFS (2014) Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun 5:3446

    Article  PubMed  Google Scholar 

  110. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E et al (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7):907–913

    Article  CAS  PubMed  Google Scholar 

  111. Wan W, Chen H, Li Y (2016) The potential mechanisms of Aβ-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in alzheimer’s disease. Int J Neurosci 2013(7454):1–7

    Google Scholar 

  112. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H et al (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction. Proc Natl Acad Sci USA 106(47):20021–20026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Du YS, Bierhaus A, Nawroth PP, Stern DM (2009) RAGE and alzheimer’s disease: a progression factor for amyloid-β- induced cellular perturbation? J Alzheimer’s Dis 16(4):833–843

    Article  Google Scholar 

  114. Wyllie AH, Rich T, Allen RL (2000) Defying death after DNA damage. Nature 407(6805):777–783

    Article  PubMed  Google Scholar 

  115. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR (2000) P53 induces apoptosis by caspase activation through mitochondrial cytochrome C release. J Biol Chem 275(10):7337–7342

    Article  CAS  PubMed  Google Scholar 

  116. Drane P, Bravard A, Bouvard V, May E (2001) Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 20(4):430–439

    Article  CAS  PubMed  Google Scholar 

  117. Huang CY, Fujimura M, Noshita N, Chang YY, Chan PH (2001) SOD1 down-regulates NF-κB and c-Myc expression in mice after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21(2):163–173

    Article  CAS  PubMed  Google Scholar 

  118. Ou P, Wolff SP (1996) A discontinuous method for catalase determination at “near physiological” concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J Biochem Biophys Methods 31(1–2):59–67

    Article  CAS  PubMed  Google Scholar 

  119. Blaine Stine W, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278(13):11612–11622

    Article  PubMed  Google Scholar 

  120. Matias AC, Manieri TM, Cipriano SS, Carioni VMO, Nomura CS, Machado CML et al (2012) Diethyldithiocarbamate induces apoptosis in neuroblastoma cells by raising the intracellular copper level, triggering cytochrome c release and caspase activation. Toxicol Vitr 27(1):349–357

    Article  Google Scholar 

  121. Magrini TD, dos Santos NV, Milazzotto MP, Cerchiaro G, da Silva MH (2012) Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study. J Biomed Opt 17(10):1015161

    Article  Google Scholar 

  122. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol. Appendix 3:Appendix 3B. https://doi.org/10.1002/0471142735.ima03bs21

  123. Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69(2):581–593

    Article  CAS  PubMed  Google Scholar 

  124. Lago L, Nunes EA, Vigato AA, Souza VCO, Barbosa F, Sato JR, Batista, BL, Cerchiaro G (2017) Flow of essential elements in subcellular fractions during oxidative stress. Biometals 30(1):83–96

    Article  CAS  PubMed  Google Scholar 

  125. Marques CMS, Nunes EA, Lago L, Pedron CN, Manieri TM, Sato RH et al (2017) Generation of advanced glycation end-products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. Mutat Res - Genet Toxicol Environ Mutagen 824:42–51

    Article  CAS  PubMed  Google Scholar 

  126. Vilma R. Martins, Edgard Graner, José Garcia-Abreu, Sandro J. De Souza, Adriana F. Mercadante, Silvio S. Veiga, Silvio M. Zanata, Vivaldo Moura Neto & Ricardo R. Brentani Vilma R. Martins, Edgard Graner, José Garcia-Abreu, Sandro J. De Souza, Adriana F. (1997). M VMN& RRB. No Title. Nat Med [Internet]. 3:1376–82. Available from: https://www.nature.com/articles/nm1297-1376

  127. Dantas LS, Chaves-Filho AB, Coelho FR, Genaro-Mattos TC, Tallman KA, Porter NA et al (2018) Cholesterol secosterol aldehyde adduction and aggregation of Cu, Zn-superoxide dismutase: Potential implications in ALS. Redox Biol 19(May):105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the multiuser central facilities (UFABC) for the experimental support. We thank Dr. Vilma R. Martins and Dr. Tiago Góss dos Santos, from AC Camargo (São Paulo, Brazil), for donating anti-PrPC produced in Wild-type mice.

Funding

The authors thank Sao Paulo State Foundation (FAPESP grant 2018/14152–0 and 2020/14175–0), and CNPq (grant 307856/2021-6). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

CMSM, RNG, TP, BLB, and GC: designed the experiments, performed research, and analyzed the data. GC: conceived the study. CMSM and GC: wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giselle Cerchiaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3717 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, C.M.S., Gomes, R.N., Pedron, T. et al. Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity. Mol Cell Biochem 478, 1847–1865 (2023). https://doi.org/10.1007/s11010-022-04631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04631-w

Keywords

Navigation