Skip to main content

Advertisement

Log in

Sepsis triggered oxidative stress-inflammatory axis: the pathobiology of reprogramming in the normal sleep–wake cycle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In individuals with sepsis-related neurodegenerative illness, sleep and circadian rhythm disturbance are common. The alteration in genomic expression linked with the immune-directed oxidative stress-inflammatory axis is thought to cause these individuals' abnormal sleep. On the other hand, sleep is linked to normal brain activity through common neurotransmitter systems and regulatory mechanisms. Ailments (ranging from cognitive to metabolic abnormalities) are seldom related to aberrant sleep that is made worse by sleep disturbance, which throws off the body's sleep–wake cycle. PubMed/Springer link /Public library of science/ScienceDirect/ Mendeley/Medline and Google Scholar were used to find possibly relevant studies. For the literature search, many keywords were considered, both individually and in combination. 'Sepsis,' 'Epidemiology of sepsis,' 'Sepsis-related hyper inflammation,' 'Relationship of sepsis-associated clock gene expression and relationship of inflammation with the reprogramming of genetic alterations' were some of the key terms utilized in the literature search. Our main objective is to understand better how traumatic infections during sepsis affect CNS processes, particularly sleep, by investigating the pathobiology of circadian reprogramming associated with immune-directed oxidative stress-inflammatory pathway responsive gene expression and sleep–wake behaviour in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, Oczkowski S, Levy MM, Derde L, Dzierba A, Du B, Aboodi M, Wunsch H, Cecconi M, Koh Y, Chertow DS, Maitland K, Alshamsi F, Belley-Cote E, Greco M, Laundy M, Morgan JS, Kesecioglu J, McGeer A, Mermel L, Mammen MJ, Alexander PE, Arrington A, Centofanti JE, Citerio G, Baw B, Memish ZA, Hammond N, Hayden FG, Evans L, Rhodes A (2020) Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 46:854–887. https://doi.org/10.1007/s00134-020-06022-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baracchi F, Ingiosi AM, Raymond RM Jr, Opp MR (2011) Sepsis-induced alterations in sleep of rats. Am J Physiol Regul Integr Comp Physiol 301:R1467–R1478. https://doi.org/10.1152/ajpregu.00354.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belsky JB, Wira CR, Jacob V, Sather JE, Lee PJ (2018) A review of micronutrients in sepsis: the role of thiamine, l-carnitine, vitamin C, selenium and vitamin D. Nutr Res Rev 31:281–290. https://doi.org/10.1017/s0954422418000124

    Article  CAS  PubMed  Google Scholar 

  4. Buchman TG, Simpson SQ, Sciarretta KL, Finne KP, Sowers N, Collier M, Chavan S, Oke I, Pennini ME, Santhosh A, Wax M, Woodbury R, Chu S, Merkeley TG, Disbrow GL, Bright RA, MaCurdy TE, Kelman JA (2020) Sepsis among medicare beneficiaries: 2. The trajectories of sepsis, 2012–2018. Crit Care Med 48:289–301. https://doi.org/10.1097/ccm.0000000000004226

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cable CA, Razavi SA, Roback JD, Murphy DJ (2019) RBC transfusion strategies in the ICU: a concise review. Crit Care Med 47:1637–1644. https://doi.org/10.1097/ccm.0000000000003985

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen YC, Tain YL, Sheen JM, Huang LT (2012) Melatonin utility in neonates and children. J Formos Med Assoc 111:57–66. https://doi.org/10.1016/j.jfma.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  7. Coopersmith CM, De Backer D, Deutschman CS, Ferrer R, Lat I, Machado FR, Martin GS, Martin-Loeches I, Nunnally ME, Antonelli M, Evans LE, Hellman J, Jog S, Kesecioglu J, Levy MM, Rhodes A (2018) Surviving sepsis campaign: research priorities for sepsis and septic shock. Intensive Care Med 44:1400–1426. https://doi.org/10.1007/s00134-018-5175-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Corl KA, Prodromou M, Merchant RC, Gareen I, Marks S, Banerjee D, Amass T, Abbasi A, Delcompare C, Palmisciano A, Aliotta J, Jay G, Levy MM (2019) The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med 47:951–959. https://doi.org/10.1097/ccm.0000000000003779

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coz Yataco AO, Simpson SQ (2020) Coronavirus disease 2019 sepsis: a nudge toward antibiotic stewardship. Chest 158:1833–1834. https://doi.org/10.1016/j.chest.2020.07.023

    Article  CAS  PubMed  Google Scholar 

  10. Crouser E, Exline M, Knoell D, Wewers MD (2008) Sepsis: links between pathogen sensing and organ damage. Curr Pharm Des 14:1840–1852. https://doi.org/10.2174/138161208784980572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crouser ED (2018) Sepsis-induced renal failure: ischemia or toxemia? Crit Care Med 46:658–660. https://doi.org/10.1097/ccm.0000000000002970

    Article  PubMed  Google Scholar 

  12. Davis FM, Schaller MA, Dendekker A, Joshi AD, Kimball AS, Evanoff H, Wilke C, Obi AT, Melvin WJ, Cavassani K, Scola M, Carson B, Moser S, Blanc V, Engoren M, Moore BB, Kunkel SL, Gallagher KA (2019) Sepsis induces prolonged epigenetic modifications in bone marrow and peripheral macrophages impairing inflammation and wound healing. Arterioscler Thromb Vasc Biol 39:2353–2366. https://doi.org/10.1161/atvbaha.119.312754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong V, Nanchal R, Karvellas CJ (2020) Pathophysiology of acute liver failure. Nutr Clin Pract 35:24–29. https://doi.org/10.1002/ncp.10459

    Article  PubMed  Google Scholar 

  14. Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP (2005) Cytokine dysregulation, inflammation and well-being. NeuroImmunoModulation 12:255–269. https://doi.org/10.1159/000087104

    Article  CAS  PubMed  Google Scholar 

  15. Englert JA, Rogers AJ (2016) Metabolism, metabolomics, and nutritional support of patients with sepsis. Clin Chest Med 37:321–331. https://doi.org/10.1016/j.ccm.2016.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  16. Evangelatos N, Bauer P, Reumann M, Satyamoorthy K, Lehrach H, Brand A (2017) Metabolomics in sepsis and its impact on public health. Public Health Genomics 20:274–285. https://doi.org/10.1159/000486362

    Article  PubMed  Google Scholar 

  17. Evans L (2019) A closer look at sepsis-associated mortality. JAMA Netw Open 2:e187565. https://doi.org/10.1001/jamanetworkopen.2018.7565

    Article  PubMed  Google Scholar 

  18. Exline MC, Crouser ED (2008) Mitochondrial mechanisms of sepsis-induced organ failure. Front Biosci 13:5030–5041. https://doi.org/10.2741/3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng M, McSparron JI, Kien DT, Stone DJ, Roberts DH, Schwartzstein RM, Vieillard-Baron A, Celi LA (2018) Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database. Intensive Care Med 44:884–892. https://doi.org/10.1007/s00134-018-5208-7

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Rey E, Pedreño M, Delgado-Maroto V, Souza-Moreira L, Delgado M (2015) Lulling immunity, pain, and stress to sleep with cortistatin. Ann N Y Acad Sci 1351:89–98. https://doi.org/10.1111/nyas.12789

    Article  CAS  PubMed  Google Scholar 

  21. Goodwin AJ, Liu V, Ford DW (2017) Hospital readmissions in sepsis survivors: are they preventable? Ann Am Thorac Soc 14:170–171. https://doi.org/10.1513/AnnalsATS.201611-836ED

    Article  PubMed  Google Scholar 

  22. Gullotta F, di Masi A, Ascenzi P (2012) Carbon monoxide: an unusual drug. IUBMB Life 64:378–386. https://doi.org/10.1002/iub.1015

    Article  CAS  PubMed  Google Scholar 

  23. Han JE, Martin GS (2017) Biomarkers in sepsis: on target or off the mark? Am J Med Sci 354:3–4. https://doi.org/10.1016/j.amjms.2017.06.008

    Article  PubMed  Google Scholar 

  24. Huang CY, Chen YT, Wu LA, Liu CJ, Chang SC, Perng DW, Chen YM, Chen TJ, Lee YC, Chou KT (2014) Sleep apnoea patients have higher mortality when confronting sepsis. Eur J Clin Investig 44:38–45. https://doi.org/10.1111/eci.12187

    Article  Google Scholar 

  25. Kempker JA, Martin GS (2016) The changing epidemiology and definitions of sepsis. Clin Chest Med 37:165–179. https://doi.org/10.1016/j.ccm.2016.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kempker JA, Martin GS (2020) A global accounting of sepsis. Lancet 395:168–170. https://doi.org/10.1016/s0140-6736(19)33065-x

    Article  PubMed  Google Scholar 

  27. Kim RY, Ng AM, Persaud AK, Furmanek SP, Kothari YN, Price JD, Wiemken TL, Saad MA, Guardiola JJ, Cavallazzi RS (2018) Antibiotic timing and outcomes in sepsis. Am J Med Sci 355:524–529. https://doi.org/10.1016/j.amjms.2018.02.007

    Article  PubMed  Google Scholar 

  28. Lasselin J, Alvarez-Salas E, Grigoleit JS (2016) Well-being and immune response: a multi-system perspective. Curr Opin Pharmacol 29:34–41. https://doi.org/10.1016/j.coph.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  29. Law AC, Turnbull AE (2020) Patient-centered outcomes after sepsis: disentangling mind and matter. Chest 158:1808–1809. https://doi.org/10.1016/j.chest.2020.07.049

    Article  PubMed  Google Scholar 

  30. Lee J, Levy MM (2019) Treatment of patients with severe sepsis and septic shock: current evidence-based practices. Rhode Island Med J 102:18–21

    Google Scholar 

  31. Lee JT, Brummel NE (2020) Passing the baton: improving postsepsis care through better transitions. Ann Am Thorac Soc 17:35–37. https://doi.org/10.1513/AnnalsATS.201910-779ED

    Article  PubMed  Google Scholar 

  32. Ahmad A, Gupta G, Afzal M, Kazmi I, Anwar F (2013) Antiulcer and antioxidant activities of a new steroid from Morus alba. Life Sci 92:202–210

    Article  CAS  Google Scholar 

  33. Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, Hirayama AV, Mastroiani F, Turtle CJ, Harhay MO, Legrand M, Deutschman CS (2020) Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med 8:1233–1244. https://doi.org/10.1016/s2213-2600(20)30404-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leligdowicz A, Matthay MA (2019) Heterogeneity in sepsis: new biological evidence with clinical applications. Crit Care 23:80. https://doi.org/10.1186/s13054-019-2372-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Levy MM (2017) Antibiotics in sepsis: the new frontier. Crit Care Med 45:907–908. https://doi.org/10.1097/ccm.0000000000002390

    Article  PubMed  Google Scholar 

  36. Levy MM (2019) Implementation of sepsis bundles: just do it!! Crit Care Med 47:1450–1451. https://doi.org/10.1097/ccm.0000000000003941

    Article  PubMed  Google Scholar 

  37. Alharbi KS, Afzal O, Al-Malki WH, Kazmi I, Shaikh MAJ, Thangavelu L, Gulati M, Singh SK, Jha NK, Gupta PK (2022) Nuclear factor-kappa B (NF-κB) inhibition as a therapeutic target for plant nutraceuticals in mitigating inflammatory lung diseases. Chem-Biol Interact 354:109842

    Article  CAS  Google Scholar 

  38. Levy MM (2020) Identifying the burden of sepsis with big data. Crit Care Med 48:422–423. https://doi.org/10.1097/ccm.0000000000004229

    Article  PubMed  Google Scholar 

  39. Levy MM, Rhodes A, Evans LE (2019) Rebuttal from drs levy, rhodes, and evans. Chest 155:19–20. https://doi.org/10.1016/j.chest.2018.10.011

    Article  PubMed  Google Scholar 

  40. Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Shaikh MAJ, Thangavelu L, Singh SK, Allam VSRR, Jha NK (2021) Nuclear factor-kappa B and its role in inflammatory lung disease. Chem-Biol Interactions 345:109568

    Article  CAS  Google Scholar 

  41. Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, Herzog EL, Kang I, Pisani MA, Yu S, Zhang C, Ring AM, Young LH, Medzhitov R (2019) GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell 178:1231-1244.e11. https://doi.org/10.1016/j.cell.2019.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Madrid-Navarro CJ, Sanchez-Galvez R, Martinez-Nicolas A, Marina R, Garcia JA, Madrid JA, Rol MA (2015) Disruption of circadian rhythms and delirium, sleep impairment and sepsis in critically ill patients. Potential therapeutic implications for increased light-dark contrast and melatonin therapy in an ICU environment. Curr Pharm Des 21:3453–3468. https://doi.org/10.2174/1381612821666150706105602

    Article  CAS  PubMed  Google Scholar 

  43. Sachchidanand Pathak GG, Gilhotra RM (2021) The role of diazepam in epigenetics: from the molecular level to clinical implications. Adv Mind Body Med 35:25–33

    PubMed  Google Scholar 

  44. Martin GS, Bassett P (2019) Crystalloids vs. colloids for fluid resuscitation in the intensive care unit: a systematic review and meta-analysis. J Crit Care 50:144–154. https://doi.org/10.1016/j.jcrc.2018.11.031

    Article  CAS  PubMed  Google Scholar 

  45. Misra AK, Levy MM, Ward NS (2020) Biomarkers of immunosuppression. Crit Care Clin 36:167–176. https://doi.org/10.1016/j.ccc.2019.08.013

    Article  PubMed  Google Scholar 

  46. Moskowitz A, Andersen LW, Huang DT, Berg KM, Grossestreuer AV, Marik PE, Sherwin RL, Hou PC, Becker LB, Cocchi MN, Doshi P, Gong J, Sen A, Donnino MW (2018) Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Crit Care 22:283. https://doi.org/10.1186/s13054-018-2217-4

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moskowitz A, Huang DT, Hou PC, Gong J, Doshi PB, Grossestreuer AV, Andersen LW, Ngo L, Sherwin RL, Berg KM, Chase M, Cocchi MN, McCannon JB, Hershey M, Hilewitz A, Korotun M, Becker LB, Otero RM, Uduman J, Sen A, Donnino MW (2020) Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: the ACTS randomized clinical trial. JAMA 324:642–650. https://doi.org/10.1001/jama.2020.11946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chellappan DK, Ng ZY, Wong J-Y, Hsu A, Wark P, Hansbro N, Taylor J, Panneerselvam J, Madheswaran T, Gupta G (2018) Immunological axis of curcumin-loaded vesicular drug delivery systems. Future Science Ltd, London, pp 839–844

    Google Scholar 

  49. Opp MR, George A, Ringgold KM, Hansen KM, Bullock KM, Banks WA (2015) Sleep fragmentation and sepsis differentially impact blood-brain barrier integrity and transport of tumor necrosis factor-α in aging. Brain Behav Immun 50:259–265. https://doi.org/10.1016/j.bbi.2015.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Postelnicu R, Evans L (2017) Monitoring of the physical exam in sepsis. Curr Opin Crit Care 23:232–236. https://doi.org/10.1097/mcc.0000000000000403

    Article  PubMed  Google Scholar 

  51. Price JD, Cavallazzi R (2019) Predicting outcomes in sepsis. Am J Med Sci 358:173–174. https://doi.org/10.1016/j.amjms.2019.05.010

    Article  PubMed  Google Scholar 

  52. Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, Kadri SS, Angus DC, Danner RL, Fiore AE, Jernigan JA, Martin GS, Septimus E, Warren DK, Karcz A, Chan C, Menchaca JT, Wang R, Gruber S, Klompas M (2017) Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA 318:1241–1249. https://doi.org/10.1001/jama.2017.13836

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM (2018) Targeting microRNAs using nanotechnology in pulmonary diseases. Panminerva Med. https://doi.org/10.23736/S0031-0808.18.03459-6

    Article  PubMed  Google Scholar 

  54. Rhee C, Zhang Z, Kadri SS, Murphy DJ, Martin GS, Overton E, Seymour CW, Angus DC, Dantes R, Epstein L, Fram D, Schaaf R, Wang R, Klompas M (2019) Sepsis surveillance using adult sepsis events simplified eSOFA criteria versus sepsis-3 sequential organ failure assessment criteria. Crit Care Med 47:307–314. https://doi.org/10.1097/ccm.0000000000003521

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roberts RJ, Miano TA, Hammond DA, Patel GP, Chen JT, Phillips KM, Lopez N, Kashani K, Qadir N, Cairns CB, Mathews K, Park P, Khan A, Gilmore JF, Brown ART, Tsuei B, Handzel M, Chang AL, Duggal A, Lanspa M, Herbert JT, Martinez A, Tonna J, Ammar MA, Nazer LH, Heavner M, Pender E, Chambers L, Kenes MT, Kaufman D, Downey A, Brown B, Chaykosky D, Wolff A, Smith M, Nault K, Gong MN, Sevransky JE, Lat I (2020) Evaluation of vasopressor exposure and mortality in patients with septic shock. Crit Care Med 48:1445–1453. https://doi.org/10.1097/ccm.0000000000004476

    Article  CAS  PubMed  Google Scholar 

  56. Romagnoli S, Amigoni A, Blangetti I, Casella G, Chelazzi C, Forfori F, Garisto C, Mondardini MC, Moltrasio M, Pasero D, Principi T, Ricci Z, Tarantino F, Conti G (2018) Light sedation with dexmedetomidine: a practical approach for the intensivist in different ICU patients. Minerva Anestesiol 84:731–746. https://doi.org/10.23736/s0375-9393.18.12350-9

    Article  PubMed  Google Scholar 

  57. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211. https://doi.org/10.1016/s0140-6736(19)32989-7

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rudd KE, Kissoon N, Limmathurotsakul D, Bory S, Mutahunga B, Seymour CW, Angus DC, West TE (2018) The global burden of sepsis: barriers and potential solutions. Crit Care 22:232. https://doi.org/10.1186/s13054-018-2157-z

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gupta G, Kazmi I, Afzal M, Rahman M, Saleem S, Ashraf MS, Khusroo MJ, Nazeer K, Ahmed S, Mujeeb M (2012) Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J Ethnopharmacol 141:810–816

    Article  CAS  Google Scholar 

  60. Sandrock CE, Albertson TE (2010) Controversies in the treatment of sepsis. Semin Respir Crit Care Med 31:66–78. https://doi.org/10.1055/s-0029-1246290

    Article  PubMed  Google Scholar 

  61. Shea BS, Opal SM (2017) The role of S1PR3 in protection from bacterial sepsis. Am J Respir Crit Care Med 196:1500–1502. https://doi.org/10.1164/rccm.201708-1726ED

    Article  CAS  PubMed  Google Scholar 

  62. Sherwin R, Winters ME, Vilke GM, Wardi G (2017) Does early and appropriate antibiotic administration improve mortality in emergency department patients with severe sepsis or septic shock? J Emerg Med 53:588–595. https://doi.org/10.1016/j.jemermed.2016.12.009

    Article  PubMed  Google Scholar 

  63. Simpson SQ (2019) Sepsis biomarkers and physician judgment in the emergency room. Crit Care Med 47:1656–1657. https://doi.org/10.1097/ccm.0000000000003983

    Article  PubMed  Google Scholar 

  64. Srinivasan V, Pandi-Perumal SR, Spence DW, Kato H, Cardinali DP (2010) Melatonin in septic shock: some recent concepts. J Crit Care 25:656.e1–6. https://doi.org/10.1016/j.jcrc.2010.03.006

    Article  CAS  Google Scholar 

  65. Stone DJ, Celi LA, Csete M (2015) Engineering control into medicine. J Crit Care 30:652.e1–7. https://doi.org/10.1016/j.jcrc.2015.01.019

    Article  Google Scholar 

  66. Sungurlu S, Kuppy J, Balk RA (2020) Role of antithrombin III and tissue factor pathway in the pathogenesis of sepsis. Crit Care Clin 36:255–265. https://doi.org/10.1016/j.ccc.2019.12.002

    Article  PubMed  Google Scholar 

  67. Gupta G, Kazmi I, Al-Abbasi FA, Singh Y, Roshan S, Rani S, Mishra A, Prasher P, Jha NK, Thangavelu L (2021) Activation of TWEAK/Fn14 signaling suppresses TRAFs/NF-? B pathway in the pathogenesis of cancer. EXCLI J 20:232

    PubMed  PubMed Central  Google Scholar 

  68. Supinski GS, Schroder EA, Callahan LA (2020) Mitochondria and critical illness. Chest 157:310–322. https://doi.org/10.1016/j.chest.2019.08.2182

    Article  CAS  PubMed  Google Scholar 

  69. Supinski GS, Wang L, Schroder EA, Callahan LAP (2020) MitoTEMPOL, a mitochondrial targeted antioxidant, prevents sepsis-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 319:L228-l238. https://doi.org/10.1152/ajplung.00473.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Truong KK, Lam MT, Grandner MA, Sassoon CS, Malhotra A (2016) Timing matters: circadian rhythm in sepsis, obstructive lung disease, obstructive sleep apnea, and cancer. Ann Am Thorac Soc 13:1144–1154. https://doi.org/10.1513/AnnalsATS.201602-125FR

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vincent JL, Singer M, Einav S, Moreno R, Wendon J, Teboul JL, Bakker J, Hernandez G, Annane D, de Man AME, Monnet X, Ranieri VM, Hamzaoui O, Takala J, Juffermans N, Chiche JD, Myatra SN, De Backer D (2021) Equilibrating SSC guidelines with individualized care. Crit Care 25:397. https://doi.org/10.1186/s13054-021-03813-0

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wardi G, Brice J, Correia M, Liu D, Self M, Tainter C (2020) Demystifying lactate in the emergency department. Ann Emerg Med 75:287–298. https://doi.org/10.1016/j.annemergmed.2019.06.027

    Article  PubMed  Google Scholar 

  73. Gupta G, Singh R, David SR, Verma RK (2013) Effect of rosiglitazone, a PPAR-γ ligand on haloperidol-induced catalepsy. CNS Neurosci Ther 19:724

    Article  CAS  Google Scholar 

  74. Wardi G, Tainter CR, Ramnath VR, Brennan JJ, Tolia V, Castillo EM, Hsia RY, Malhotra A, Schmidt U, Meier A (2021) Age-related incidence and outcomes of sepsis in California, 2008–2015. J Crit Care 62:212–217. https://doi.org/10.1016/j.jcrc.2020.12.015

    Article  PubMed  Google Scholar 

  75. Ware LB, Eisner MD, Flaherty KR (2009) Clinical year in review II: Sepsis, mechanical ventilation, occupational and environmental lung disease, and sleep. Proc Am Thorac Soc 6:494–499. https://doi.org/10.1513/pats.200907-060TT

    Article  PubMed  Google Scholar 

  76. Mehta M, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, de Jesus TPA, Dureja H, Chellappan DK, Gupta G (2019) Interactions with the macrophages: an emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 304:10–19

    Article  CAS  Google Scholar 

  77. Woolum JA, Abner EL, Kelly A, Thompson Bastin ML, Morris PE, Flannery AH (2018) Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit Care Med 46:1747–1752. https://doi.org/10.1097/ccm.0000000000003311

    Article  CAS  PubMed  Google Scholar 

  78. Xie J, Zhao ZZ, Li P, Zhu CL, Guo Y, Wang J, Deng XM, Wang JF (2021) Senkyunolide I protects against sepsis-associated encephalopathy by attenuating sleep deprivation in a murine model of cecal ligation and puncture. Oxid Med Cell Longev 2021:6647258. https://doi.org/10.1155/2021/6647258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Prasher P, Sharma M, Chan Y, Singh SK, Anand K, Dureja H, Jha NK, Gupta G, Zacconi F, Chellappan DK (2022) Recent trends in rationally designed molecules as kinase inhibitors. Curr Med Chem

  80. Zhang Y, Xie B, Chen X, Zhang J, Yuan S (2021) A key role of gut microbiota-vagus nerve/spleen axis in sleep deprivation-mediated aggravation of systemic inflammation after LPS administration. Life Sci 265:118736. https://doi.org/10.1016/j.lfs.2020.118736

    Article  CAS  PubMed  Google Scholar 

  81. Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Fan H (2018) Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol Ther 26:1375–1384. https://doi.org/10.1016/j.ymthe.2018.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Deanship of Scientific Research at Umm Al-Qura University for the financial support of our project (Project code 224UQU4310387DSR07).

Author information

Authors and Affiliations

Authors

Contributions

WHA and MGM proposed a study; SA and SSI participated in literature search and data analysis; IK and GG prepared figures. All authors approved the content of the manuscript.

Corresponding author

Correspondence to Waleed Hassan Almalki.

Ethics declarations

Conflict of interest

The authors disclose that they have no conflicting interests.

Ethical approval

Not Applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almalki, W.H., Ghoneim, M.M., Alshehri, S. et al. Sepsis triggered oxidative stress-inflammatory axis: the pathobiology of reprogramming in the normal sleep–wake cycle. Mol Cell Biochem 477, 2203–2211 (2022). https://doi.org/10.1007/s11010-022-04432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04432-1

Keywords

Navigation