Skip to main content

Advertisement

Log in

Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Autophagy is the process of recycling and utilization of degraded organelles and macromolecules in the cell compartments formed during the fusion of autophagosomes with lysosomes. During autophagy induction the healthy and tumor cells adapt themselves to harsh conditions such as cellular stress or insufficient supply of nutrients in the cell environment to maintain their homeostasis. Autophagy is currently seen as a form of programmed cell death along with apoptosis and necroptosis. In recent years multiple studies have considered the autophagy as a potential mechanism of anticancer therapy in malignant glioma. Although, subsequent steps in autophagy development are known and well-described, on molecular level the mechanism of autophagosome initiation and maturation using autophagy-related proteins is under investigation. This article reviews current state about the mechanism of autophagy, its molecular pathways and the most recent studies on roles of autophagy-related proteins and their isoforms in glioma progression and its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326. https://doi.org/10.1016/j.cell.2010.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16:487–511. https://doi.org/10.1038/nrd.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7:673–682. https://doi.org/10.4161/auto.7.7.14733

    Article  CAS  PubMed  Google Scholar 

  4. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  6. Schneider JL, Cuervo AM (2014) Autophagy and human disease: emerging themes. Curr Opin Genet Dev 26:16–23

    Article  CAS  PubMed  Google Scholar 

  7. Chu CT (2008) Eaten alive: autophagy and neuronal cell death after hypoxia-ischemia. Am J Pathol 172:284–287. https://doi.org/10.2353/ajpath.2008.071064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77. https://doi.org/10.1016/j.tcb.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2010) Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 6:301–303. https://doi.org/10.4161/auto.6.2.11134

    Article  CAS  PubMed  Google Scholar 

  10. Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596. https://doi.org/10.1042/EBC20170021

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meng D, Frank AR, Jewell JL (2018) mTOR signaling in stem and progenitor cells. Development. https://doi.org/10.1242/dev.152595

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carroll B, Maetzel D, Maddocks OD, Otten G, Ratcliff M, Smith GR, Dunlop EA, Passos JF, Davies OR, Jaenisch R, Tee AR, Sarkar S, Korolchuk VI (2016) Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. Elife. https://doi.org/10.7554/eLife.11058

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17:839–849. https://doi.org/10.1038/cr.2007.78

    Article  CAS  PubMed  Google Scholar 

  14. Sun Q, Fan W, Zhong Q (2009) Regulation of Beclin 1 in autophagy. Autophagy 5:713–716. https://doi.org/10.4161/auto.5.5.8524

    Article  CAS  PubMed  Google Scholar 

  15. Carew JS, Kelly KR, Nawrocki ST (2012) Autophagy as a target for cancer therapy: new developments. Cancer Manag Res 4:357–365. https://doi.org/10.2147/CMAR.S26133

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59:59–65. https://doi.org/10.1006/geno.1999.5851

    Article  CAS  PubMed  Google Scholar 

  17. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676. https://doi.org/10.1038/45257

    Article  CAS  PubMed  Google Scholar 

  18. Avalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AF (2014) Tumor suppression and promotion by autophagy. Biomed Res Int 2014:603980. https://doi.org/10.1155/2014/603980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pracharova J, Radosova Muchova T, Dvorak Tomastikova E, Intini FP, Pacifico C, Natile G, Kasparkova J, Brabec V (2016) Anticancer potential of a photoactivated transplatin derivative containing the methylazaindole ligand mediated by ROS generation and DNA cleavage. Dalton Trans 45:13179–13186. https://doi.org/10.1039/c6dt01467d

    Article  CAS  PubMed  Google Scholar 

  20. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang X, Yu DD, Yan F, Jing YY, Han ZP, Sun K, Liang L, Hou J, Wei LX (2015) The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci 5:14. https://doi.org/10.1186/s13578-015-0005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729. https://doi.org/10.1101/gad.2016111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu L, Fu X, Yuan C, Jiang X, Zhang G (2018) Induction of oxidative DNA damage in bovine herpesvirus 1 infected bovine kidney cells (MDBK cells) and human tumor cells (A549 cells and U2OS cells). Viruses. https://doi.org/10.3390/v10080393

    Article  PubMed  PubMed Central  Google Scholar 

  24. Auten RL, Davis JM (2009) Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 66:121–127. https://doi.org/10.1203/PDR.0b013e3181a9eafb

    Article  CAS  PubMed  Google Scholar 

  25. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437. https://doi.org/10.1038/nrc2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Wu L, Wang D, Wang H, Chen J, Yang C, Bao J, Wu C (2016) Role of reactive oxygen species-mediated MAPK and NF-kappaB activation in polygonatum cyrtonema lectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells. J Biochem 160:315–324. https://doi.org/10.1093/jb/mvw040

    Article  CAS  PubMed  Google Scholar 

  27. Hui KF, Yeung PL, Chiang AK (2016) Induction of MAPK- and ROS-dependent autophagy and apoptosis in gastric carcinoma by combination of romidepsin and bortezomib. Oncotarget 7:4454–4467. https://doi.org/10.18632/oncotarget.6601

    Article  PubMed  Google Scholar 

  28. Zhang SY, Li XB, Hou SG, Sun Y, Shi YR, Lin SS (2016) Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. Int J Mol Med 38:291–299. https://doi.org/10.3892/ijmm.2016.2585

    Article  CAS  PubMed  Google Scholar 

  29. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28:1341–1350. https://doi.org/10.1038/emboj.2009.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107:4153–4158. https://doi.org/10.1073/pnas.0913860107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ryter SW, Mizumura K, Choi AM (2014) The impact of autophagy on cell death modalities. Int J Cell Biol 2014:502676. https://doi.org/10.1155/2014/502676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavare S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803. https://doi.org/10.1101/gad.519709

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626. https://doi.org/10.1083/jcb.124.4.619

    Article  CAS  PubMed  Google Scholar 

  35. Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz A, Lin Z, Balliet R, Howell A, Sotgia F (2010) Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther 10:537–542. https://doi.org/10.4161/cbt.10.6.13370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Silva LM, Jung JU (2013) Modulation of the autophagy pathway by human tumor viruses. Semin Cancer Biol 23:323–328. https://doi.org/10.1016/j.semcancer.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Avia M, Rojas JM, Miorin L, Pascual E, Van Rijn PA, Martin V, Garcia-Sastre A, Sevilla N (2019) Virus-induced autophagic degradation of STAT2 as a mechanism for interferon signaling blockade. EMBO Rep 20:e48766. https://doi.org/10.15252/embr.201948766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Hu B, Ji G, Zhang Y, Xu C, Lei J, Ding C, Zhou J (2020) Cytoplasmic cargo receptor p62 inhibits avibirnavirus replication by mediating autophagic degradation of viral protein VP2. J Virol. https://doi.org/10.1128/JVI.01255-20

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muscolino E, Schmitz R, Loroch S, Caragliano E, Schneider C, Rizzato M, Kim YH, Krause E, Juranic Lisnic V, Sickmann A, Reimer R, Ostermann E, Brune W (2020) Herpesviruses induce aggregation and selective autophagy of host signalling proteins NEMO and RIPK1 as an immune-evasion mechanism. Nat Microbiol 5:331–342. https://doi.org/10.1038/s41564-019-0624-1

    Article  CAS  PubMed  Google Scholar 

  40. zur Hausen H (1991) Viruses in human cancers. Science 254:1167–1173. https://doi.org/10.1126/science.1659743

    Article  CAS  PubMed  Google Scholar 

  41. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prevent 23:1985–1996. https://doi.org/10.1158/1055-9965.EPI-14-0275

    Article  CAS  Google Scholar 

  42. D’Alessio A, Proietti G, Sica G, Scicchitano BM (2019) Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers (Basel). https://doi.org/10.3390/cancers11040469

    Article  Google Scholar 

  43. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G and National Cancer Institute of Canada Clinical Trials G (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  44. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prevent 18:3–9. https://doi.org/10.22034/APJCP.2017.18.1.3

    Article  Google Scholar 

  45. Kaza N, Kohli L, Roth KA (2012) Autophagy in brain tumors: a new target for therapeutic intervention. Brain Pathol 22:89–98. https://doi.org/10.1111/j.1750-3639.2011.00544.x

    Article  CAS  PubMed  Google Scholar 

  46. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246. https://doi.org/10.1074/jbc.C100319200

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC (2016) Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev 96:1025–1069. https://doi.org/10.1152/physrev.00030.2015

    Article  CAS  PubMed  Google Scholar 

  48. Vescovo T, Pagni B, Piacentini M, Fimia GM, Antonioli M (2020) Regulation of autophagy in cells infected with oncogenic human viruses and its impact on cancer development. Front Cell Dev Biol 8:47. https://doi.org/10.3389/fcell.2020.00047

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kudchodkar SB, Levine B (2009) Viruses and autophagy. Rev Med Virol 19:359–378. https://doi.org/10.1002/rmv.630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Henderson V, Smith B, Burton LJ, Randle D, Morris M, Odero-Marah VA (2015) Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression. Cell Adh Migr 9:255–264. https://doi.org/10.1080/19336918.2015.1013383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahajan-Thakur S, Bien-Moller S, Marx S, Schroeder H, Rauch BH (2017) Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review. Int J Mol Sci. https://doi.org/10.3390/ijms18112448

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gonzalez E, McGraw TE (2009) The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8:2502–2508. https://doi.org/10.4161/cc.8.16.9335

    Article  CAS  PubMed  Google Scholar 

  53. Endersby R, Zhu X, Hay N, Ellison DW, Baker SJ (2011) Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res 71:4106–4116. https://doi.org/10.1158/0008-5472.CAN-10-3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Q, Chen X, Hay N (2017) Akt as a target for cancer therapy: more is not always better (lessons from studies in mice). Br J Cancer 117:159–163. https://doi.org/10.1038/bjc.2017.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Joy A, Kapoor M, Georges J, Butler L, Chang Y, Li C, Crouch A, Smirnov I, Nakada M, Hepler J, Marty M, Feuerstein BG (2016) The role of AKT isoforms in glioblastoma: AKT3 delays tumor progression. J Neurooncol 130:43–52. https://doi.org/10.1007/s11060-016-2220-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaley TJ, Panageas KS, Mellinghoff IK, Nolan C, Gavrilovic IT, DeAngelis LM, Abrey LE, Holland EC, Lassman AB (2019) Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. J Neurooncol 144:403–407. https://doi.org/10.1007/s11060-019-03243-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ronellenfitsch MW, Zeiner PS, Mittelbronn M, Urban H, Pietsch T, Reuter D, Senft C, Steinbach JP, Westphal M, Harter PN (2018) Akt and mTORC1 signaling as predictive biomarkers for the EGFR antibody nimotuzumab in glioblastoma. Acta Neuropathol Commun 6:81. https://doi.org/10.1186/s40478-018-0583-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaley TJ, Panageas KS, Pentsova EI, Mellinghoff IK, Nolan C, Gavrilovic I, DeAngelis LM, Abrey LE, Holland EC, Omuro A, Lacouture ME, Ludwig E, Lassman AB (2020) Phase I clinical trial of temsirolimus and perifosine for recurrent glioblastoma. Ann Clin Transl Neurol 7:429–436. https://doi.org/10.1002/acn3.51009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bozic M, van den Bekerom L, Milne BA, Goodman N, Roberston L, Prescott AR, Macartney TJ, Dawe N, McEwan DG (2020) A conserved ATG2-GABARAP family interaction is critical for phagophore formation. EMBO Rep 21:e48412. https://doi.org/10.15252/embr.201948412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu Y, Huang Z, Hong L, Lu JH, Feng D, Yin XM, Li M (2019) Targeting ATG4 in cancer therapy. Cancers (Basel). https://doi.org/10.3390/cancers11050649

    Article  PubMed Central  Google Scholar 

  61. Agrotis A, Pengo N, Burden JJ, Ketteler R (2019) Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy 15:976–997. https://doi.org/10.1080/15548627.2019.1569925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bortnik S, Choutka C, Horlings HM, Leung S, Baker JH, Lebovitz C, Dragowska WH, Go NE, Bally MB, Minchinton AI, Gelmon KA, Gorski SM (2016) Identification of breast cancer cell subtypes sensitive to ATG4B inhibition. Oncotarget 7:66970–66988. https://doi.org/10.18632/oncotarget.11408

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tran E, Chow A, Goda T, Wong A, Blakely K, Rocha M, Taeb S, Hoang VC, Liu SK, Emmenegger U (2013) Context-dependent role of ATG4B as target for autophagy inhibition in prostate cancer therapy. Biochem Biophys Res Commun 441:726–731. https://doi.org/10.1016/j.bbrc.2013.10.117

    Article  CAS  PubMed  Google Scholar 

  64. Mao JJ, Wu LX, Wang W, Ye YY, Yang J, Chen H, Yang QF, Zhang XY, Wang B, Chen WX (2018) Nucleotide variation in ATG4A and susceptibility to cervical cancer in Southwestern Chinese women. Oncol Lett 15:2992–3000. https://doi.org/10.3892/ol.2017.7663

    Article  CAS  PubMed  Google Scholar 

  65. Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J, Chen XP (2019) Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res 38:298. https://doi.org/10.1186/s13046-019-1287-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gil J, Ramsey D, Pawlowski P, Szmida E, Leszczynski P, Bebenek M, Sasiadek MM (2018) The influence of tumor microenvironment on ATG4D gene expression in colorectal cancer patients. Med Oncol 35:159. https://doi.org/10.1007/s12032-018-1220-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, Scherer SW (2005) Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 280:18283–18290. https://doi.org/10.1074/jbc.M413957200

    Article  CAS  PubMed  Google Scholar 

  68. Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465–480. https://doi.org/10.1083/jcb.148.3.465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdul Rahim SA, Dirkse A, Oudin A, Schuster A, Bohler J, Barthelemy V, Muller A, Vallar L, Janji B, Golebiewska A, Niclou SP (2017) Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. Br J Cancer 117:813–825. https://doi.org/10.1038/bjc.2017.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Costa JR, Prak K, Aldous S, Gewinner CA, Ketteler R (2016) Autophagy gene expression profiling identifies a defective microtubule-associated protein light chain 3A mutant in cancer. Oncotarget 7:41203–41216. https://doi.org/10.18632/oncotarget.9754

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang N, Tan HY, Li S, Feng Y (2017) Atg9b deficiency suppresses autophagy and potentiates endoplasmic reticulum stress-associated hepatocyte apoptosis in hepatocarcinogenesis. Theranostics 7:2325–2338. https://doi.org/10.7150/thno.18225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moazeni-Roodi A, Tabasi F, Ghavami S, Hashemi M (2019) Investigation of ATG16L1 rs2241880 polymorphism with cancer risk: a meta-analysis. Medicina (Kaunas). https://doi.org/10.3390/medicina55080425

    Article  Google Scholar 

  73. Dunwell T, Hesson L, Rauch TA, Wang L, Clark RE, Dallol A, Gentle D, Catchpoole D, Maher ER, Pfeifer GP, Latif F (2010) A genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers. Mol Cancer 9:44. https://doi.org/10.1186/1476-4598-9-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Frolov A, Evans IM, Li N, Sidlauskas K, Paliashvili K, Lockwood N, Barrett A, Brandner S, Zachary IC, Frankel P (2016) Imatinib and Nilotinib increase glioblastoma cell invasion via Abl-independent stimulation of p130Cas and FAK signalling. Sci Rep 6:27378. https://doi.org/10.1038/srep27378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koukourakis MI, Kalamida D, Giatromanolaki A, Zois CE, Sivridis E, Pouliliou S, Mitrakas A, Gatter KC, Harris AL (2015) Autophagosome proteins LC3A, LC3B and LC3C have distinct subcellular distribution kinetics and expression in cancer cell lines. PLoS ONE 10:e0137675. https://doi.org/10.1371/journal.pone.0137675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N, Shingu T, Tamada Y, Zhang L, Conrad C, Bogler O, Mills G, Sawaya R, Kondo S (2008) Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy 4:467–475. https://doi.org/10.4161/auto.5668

    Article  CAS  PubMed  Google Scholar 

  77. Giatromanolaki A, Sivridis E, Mitrakas A, Kalamida D, Zois CE, Haider S, Piperidou C, Pappa A, Gatter KC, Harris AL, Koukourakis MI (2014) Autophagy and lysosomal related protein expression patterns in human glioblastoma. Cancer Biol Ther 15:1468–1478. https://doi.org/10.4161/15384047.2014.955719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang J (2015) Teaching the basics of autophagy and mitophagy to redox biologists–mechanisms and experimental approaches. Redox Biol 4:242–259. https://doi.org/10.1016/j.redox.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, Mourmouras V, Rubino G, Miracco C (2009) The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 5:930–936. https://doi.org/10.4161/auto.5.7.9227

    Article  PubMed  Google Scholar 

  80. Kaverina NV, Kadagidze ZG, Borovjagin AV, Karseladze AI, Kim CK, Lesniak MS, Miska J, Zhang P, Baryshnikova MA, Xiao T, Ornelles D, Cobbs C, Khramtsov A, Ulasov IV (2018) Tamoxifen overrides autophagy inhibition in Beclin-1-deficient glioma cells and their resistance to adenovirus-mediated oncolysis via upregulation of PUMA and BAX. Oncogene. https://doi.org/10.1038/s41388-018-0395-9

    Article  PubMed  Google Scholar 

  81. Padmakrishnan CJ, Easwer HV, Vijayakurup V, Menon GR, Nair S, Gopala S (2019) High LC3/beclin expression correlates with poor survival in glioma: a definitive role for autophagy as evidenced by in vitro autophagic flux. Pathol Oncol Res 25:137–148. https://doi.org/10.1007/s12253-017-0310-7

    Article  CAS  Google Scholar 

  82. Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F, Pirtoli L, Miracco C (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14:574–586. https://doi.org/10.4161/cbt.24597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Graf MR, Jia W, Loria RM (2007) The neuro-steroid, 3beta androstene 17alpha diol exhibits potent cytotoxic effects on human malignant glioma and lymphoma cells through different programmed cell death pathways. Br J Cancer 97:619–627. https://doi.org/10.1038/sj.bjc.6603894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huynh PN, Loria RM (1997) Contrasting effects of alpha- and beta-androstenediol on oncogenic myeloid cell lines in vitro. J Leukoc Biol 62:258–267. https://doi.org/10.1002/jlb.62.2.258

    Article  CAS  PubMed  Google Scholar 

  85. Huynh PN, Carter WH Jr, Loria RM (2000) 17 alpha androstenediol inhibition of breast tumor cell proliferation in estrogen receptor-positive and -negative cell lines. Cancer Detect Prev 24:435–444

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers "Digital biodesign and personalized healthcare" No. 075-15-2020-926.

Funding

This work is supported by Russian Science Foundation under grant No. 21-15-00213 (IU, description of molecular mechanisms of autophagy).

Author information

Authors and Affiliations

Authors

Contributions

EB: Conception, design, writing – review & editing. RKK: revising the manuscript, drafting, editing. IVU: supervise, critically edited and approved find draft for submission. PT: Revising and approve the final manuscript for submission. IK-editing manuscript; RM: revising and approve the manuscript to be published. AA: Revising critically and approve the final manuscript for submission.

Corresponding authors

Correspondence to Ilya V. Ulasov or Arbind Acharya.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal, performed by any of the author.

Data availability

All data generated or analysed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, E., Kharwar, R.K., Ulasov, I.V. et al. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance. Mol Cell Biochem 477, 593–604 (2022). https://doi.org/10.1007/s11010-021-04308-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04308-w

Keywords

Navigation