Skip to main content

Advertisement

Log in

RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

RNA-binding proteins (RBPs) are critical players in the post-transcriptional regulation of gene expression and are associated with each event in RNA metabolism. The term ‘RNA-binding motif’ (RBM) is assigned to novel RBPs with one or more RNA recognition motif (RRM) domains that are mainly involved in the nuclear processing of RNAs. RBM47 is a novel RBP conserved in vertebrates with three RRM domains whose contributions to various aspects of cellular functions are as yet emerging. Loss of RBM47 function affects head morphogenesis in zebrafish embryos and leads to perinatal lethality in mouse embryos, thereby assigning it to be an essential gene in early development of vertebrates. Its function as an essential cofactor for APOBEC1 in C to U RNA editing of several targets through substitution for A1CF in the A1CF-APOBEC1 editosome, established a new paradigm in the field. Recent advances in the understanding of its involvement in cancer progression assigned RBM47 to be a tumor suppressor that acts by inhibiting EMT and Wnt/\(\upbeta\)-catenin signaling through post-transcriptional regulation. RBM47 is also required to maintain immune homeostasis, which adds another facet to its regulatory role in cellular functions. Here, we review the emerging roles of RBM47 in various biological contexts and discuss the current gaps in our knowledge alongside future perspectives for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated during the current study.

References

  1. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845. https://doi.org/10.1038/nrg3813

    Article  CAS  PubMed  Google Scholar 

  2. Hentze MW, Castello A, Schwarzl T, Preiss T (2018) A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 19:327–341. https://doi.org/10.1038/nrm.2017.130

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell 54:547–558. https://doi.org/10.1016/j.molcel.2014.04.033

    Article  CAS  PubMed  Google Scholar 

  4. Sternburg EL, Karginov FV (2020) Global approaches in studying RNA-binding protein interaction networks. Trends Biochem Sci 45:593–603. https://doi.org/10.1016/j.tibs.2020.03.005

    Article  CAS  PubMed  Google Scholar 

  5. Ray D, Kazan H, Cook KB et al (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177. https://doi.org/10.1038/nature12311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tweedie S, Braschi B, Gray K et al (2021) Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res 49:D939–D946. https://doi.org/10.1093/nar/gkaa980

    Article  CAS  PubMed  Google Scholar 

  7. Ladd AN (2016) New insights into the role of RNA-binding proteins in the regulation of heart development. International review of cell and molecular biology. Elsevier, Amsterdam, pp 125–185

    Google Scholar 

  8. Sutherland LC, Rintala-Maki ND, White RD, Morin CD (2005) RNA Binding motif (RBM) proteins: a novel family of apoptosis modulators? J Cell Biochem 94:5–24. https://doi.org/10.1002/jcb.20204

    Article  CAS  PubMed  Google Scholar 

  9. Ma K, Inglis JD, Sharkey A et al (1993) A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 75:1287–1295. https://doi.org/10.1016/0092-8674(93)90616-X

    Article  CAS  PubMed  Google Scholar 

  10. Loebel DAF, Studdert JB, Power M et al (2011) Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm. Development 138:4511–4522. https://doi.org/10.1242/dev.063867

    Article  CAS  PubMed  Google Scholar 

  11. Guan R, El-Rass S, Spillane D et al (2013) rbm47, a novel RNA binding protein, regulates zebrafish head development. Dev Dyn 242:1395–1404. https://doi.org/10.1002/dvdy.24039

    Article  CAS  PubMed  Google Scholar 

  12. Fossat N, Radziewic T, Jones V et al (2016) Conditional restoration and inactivation of Rbm47 reveal its tissue-context requirement for viability and growth. Genesis 54:115–122. https://doi.org/10.1002/dvg.22920

    Article  CAS  PubMed  Google Scholar 

  13. Shao Y, Chen C, Shen H et al (2019) GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Res 29:682–696. https://doi.org/10.1101/gr.238733.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buniello A, Macarthur JAL, Cerezo M et al (2019) The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–D1012. https://doi.org/10.1093/nar/gky1120

    Article  CAS  PubMed  Google Scholar 

  15. Surendran P, Drenos F, Young R et al (2016) Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48:1151–1161. https://doi.org/10.1038/ng.3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maris C, Dominguez C, Allain FHT (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131. https://doi.org/10.1111/j.1742-4658.2005.04653.x

    Article  CAS  PubMed  Google Scholar 

  17. SenGupta D (2013) RNA-binding domains in proteins. Brenner’s encyclopedia of genetics, 2nd edn. Elsevier, Amsterdam, pp 274–276

    Chapter  Google Scholar 

  18. Vanharanta S, Marney CB, Shu W et al (2014) Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer. Elife. https://doi.org/10.7554/eLife.02734.001

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim YE, Won M, Lee SG et al (2019) RBM47-regulated alternative splicing of TJP1 promotes actin stress fiber assembly during epithelial-to-mesenchymal transition. Oncogene 38:6521–6536. https://doi.org/10.1038/s41388-019-0892-5

    Article  CAS  PubMed  Google Scholar 

  20. Wei Y, Zhang F, Zhang Y et al (2019) Post-transcriptional regulator Rbm47 elevates IL-10 production and promotes the immunosuppression of B cells. Cell Mol Immunol 16:580–589. https://doi.org/10.1038/s41423-018-0041-z

    Article  CAS  PubMed  Google Scholar 

  21. Lau PP, Chang BHJ, Chan L (2001) Two-hybrid cloning identifies an RNA-binding protein, GRY-RBP, as a component of apobec-1 editosome. Biochem Biophys Res Commun 282:977–983. https://doi.org/10.1006/bbrc.2001.4679

    Article  CAS  PubMed  Google Scholar 

  22. Blanc V, Navaratnam N, Henderson JO et al (2001) Ô | identification of GRY-RBP as an apolipoprotein B RNA-binding protein that interacts with both Apobec-1 and Apobec-1 complementation factor to modulate C to U editing. J Biol Chem 276:10272–10283. https://doi.org/10.1074/jbc.M006435200

    Article  CAS  PubMed  Google Scholar 

  23. Colegrove-Otero LJ, Minshall N, Standart N (2005) RNA-binding proteins in early development. Crit Rev Biochem Mol Biol 40:21–73

    Article  CAS  PubMed  Google Scholar 

  24. Katsanou V, Milatos S, Yiakouvaki A et al (2009) The RNA-binding protein Elavl1/HuR Is essential for placental branching morphogenesis and embryonic development. Mol Cell Biol 29:2762–2776. https://doi.org/10.1128/mcb.01393-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stumpo DJ, Byrd NA, Phillips RS et al (2004) Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol 24:6445–6455. https://doi.org/10.1128/mcb.24.14.6445-6455.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sottrup-Jensen L, Sand O, Kristensen L, Fey GH (1989) The α-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian α-macroglobulins. J Biol Chem 264:15781–15789. https://doi.org/10.1016/S0021-9258(18)71545-7

    Article  CAS  PubMed  Google Scholar 

  27. Feldman SR, Gonias SL, Pizzo SV (1985) Model of α2-macroglobulin structure and function. Proc Natl Acad Sci USA 82:5700–5704. https://doi.org/10.1073/pnas.82.17.5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lindner I, Hemdan NYA, Buchold M et al (2010) α2-Macroglobulin inhibits the malignant properties of astrocytoma cells by impeding β-catenin signaling. Cancer Res 70:277–287. https://doi.org/10.1158/0008-5472.CAN-09-1462

    Article  CAS  PubMed  Google Scholar 

  29. Fossat N, Tourle K, Radziewic T et al (2014) C to U RNA editing mediated by APOBEC 1 requires RNA—binding protein RBM 47. EMBO Rep 15:903–910. https://doi.org/10.15252/embr.201438450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soleymanjahi S, Blanc V, Molitor EA et al (2020) 563 Intestine-specific deletion of RNA-binding motif protein 47 (Rbm47) promotes epithelial development and adaption to acute injury by up-regulating proliferative and anti-oxidative response pathways. Gastroenterology 158:S-115-S-116. https://doi.org/10.1016/s0016-5085(20)30969-0

    Article  Google Scholar 

  31. Takahashi K, Yamanaka S (2013) Induced pluripotent stem cells in medicine and biology. Dev 140:2457–2461. https://doi.org/10.1242/dev.092551

    Article  CAS  Google Scholar 

  32. Romito A, Cobellis G (2016) Pluripotent stem cells: current understanding and future directions. Stem Cells Int. https://doi.org/10.1155/2016/9451492

    Article  PubMed  Google Scholar 

  33. Yeganeh M, Seyedjafari E, Kamrani FA, Ghaemi N (2013) RNA-binding protein Rbm47 binds to Nanog in mouse embryonic stem cells. Mol Biol Rep 40:4391–4396. https://doi.org/10.1007/s11033-013-2528-0

    Article  CAS  PubMed  Google Scholar 

  34. Cieply B, Park JW, Nakauka-Ddamba A et al (2016) Multiphasic and dynamic changes in alternative splicing during induction of pluripotency are coordinated by numerous RNA-binding proteins. Cell Rep 15:247–255. https://doi.org/10.1016/j.celrep.2016.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen B, Yu S, Singh S et al (2011) Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biol Int 35:29–37. https://doi.org/10.1042/cbi20090081

    Article  CAS  PubMed  Google Scholar 

  36. Gagnidze K, Rayon-Estrada V, Harroch S et al (2018) A new chapter in genetic medicine: RNA editing and its role in disease pathogenesis. Trends Mol Med 24:294–303

    Article  CAS  PubMed  Google Scholar 

  37. Kung CP, Maggi LB, Weber JD (2018) The role of RNA editing in cancer development and metabolic disorders. Front Endocrinol 9:762 (Lausanne)

    Article  Google Scholar 

  38. Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83–96

    Article  CAS  PubMed  Google Scholar 

  39. Chen SH, Habib G, Yang CY et al (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science (80−) 238:363–366. https://doi.org/10.1126/science.3659919

    Article  CAS  Google Scholar 

  40. Powell LM, Wallis SC, Pease RJ et al (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831–840. https://doi.org/10.1016/0092-8674(87)90510-1

    Article  CAS  PubMed  Google Scholar 

  41. Lellek H, Kirsten R, Diehl I et al (2000) Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J Biol Chem 275:19848–19856. https://doi.org/10.1074/jbc.M001786200

    Article  CAS  PubMed  Google Scholar 

  42. Mehta A, Kinter MT, Sherman NE, Driscoll DM (2000) Molecular cloning of Apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol Cell Biol 20:1846–1854. https://doi.org/10.1128/mcb.20.5.1846-1854.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mehta A, Driscoll DM (2002) Identification of domains in apobec-1 complementation factor required for RNA binding and apolipoprotein-B mRNA editing. RNA 8:69–82. https://doi.org/10.1017/S1355838202015649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anant S, Davidson NO (2001) Molecular mechanisms of apolipoprotein B mRNA editing. Curr Opin Lipidol 12:159–165

    Article  CAS  PubMed  Google Scholar 

  45. Blanc V, Xie Y, Kennedy S et al (2019) Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA 25:70–81. https://doi.org/10.1261/rna.068395.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fossat N, Tam PPL (2014) Re-editing the paradigm of Cytidine (C) to Uridine (U) RNA editing. RNA Biol 11:1233–1237

    Article  PubMed  Google Scholar 

  47. Blanc V, Henderson JO, Newberry EP et al (2005) Targeted deletion of the murine apobec-1 complementation factor (acf) gene results in embryonic lethality. Mol Cell Biol 25:7260–7269. https://doi.org/10.1128/mcb.25.16.7260-7269.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blanc V, Sessa KJ, Kennedy S et al (2010) Apobec-1 complementation factor modulates liver regeneration by post-transcriptional regulation of interleukin-6 mRNA stability. J Biol Chem 285:19184–19192. https://doi.org/10.1074/jbc.M110.115147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Snyder EM, McCarty C, Mehalow A et al (2017) APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo. RNA 23:457–465. https://doi.org/10.1261/rna.058818.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolfe AD, Arnold DB, Chen XS (2019) Comparison of RNA editing activity of APOBEC1-A1CF and APOBEC1-RBM47 complexes reconstituted in HEK293T cells. J Mol Biol 431:1506–1517. https://doi.org/10.1016/j.jmb.2019.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gebauer F, Schwarzl T, Valcárcel J, Hentze MW (2020) RNA-binding proteins in human genetic disease. Nat Rev Genet. https://doi.org/10.1038/s41576-020-00302-y

    Article  PubMed  Google Scholar 

  52. Wang ZL, Li B, Luo YX et al (2018) Comprehensive genomic characterization of RNA-binding proteins across human cancers. Cell Rep 22:286–298. https://doi.org/10.1016/j.celrep.2017.12.035

    Article  CAS  PubMed  Google Scholar 

  53. Qin H, Ni H, Liu Y et al (2020) RNA-binding proteins in tumor progression. J Hematol Oncol 13:90

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pereira B, Billaud M, Almeida R (2017) RNA-binding proteins in cancer: old players and new actors. Trends in Cancer 3:506–528. https://doi.org/10.1016/j.trecan.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  55. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  56. Ding L, Ellis MJ, Li S et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005. https://doi.org/10.1038/nature08989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rokavec M, Kaller M, Horst D, Hermeking H (2017) Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci Rep. https://doi.org/10.1038/s41598-017-04234-2

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jiang QQ, Liu WB (2018) MiR-25 promotes melanoma progression by regulating RNA binding motif protein 47. Medecine/Sciences 34:59–65. https://doi.org/10.1051/medsci/201834f111

    Article  Google Scholar 

  59. Chen H, Chong W, Yang X et al (2020) Age-related mutational signature negatively associated with immune activity and survival outcome in triple-negative breast cancer. Oncoimmunology. https://doi.org/10.1080/2162402X.2020.1788252

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xiang Y, Zhou S, Hao J et al (2020) Development and validation of a prognostic model for kidney renal clear cell carcinoma based on RNA binding protein expression. Aging 12:25356–25372. https://doi.org/10.18632/aging.104137 (Albany NY)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li R, Li H, Ge C et al (2020) Increased expression of the RNA-binding motif protein 47 predicts poor prognosis in non-small-cell lung cancer. Oncol Lett 19:3111–3122. https://doi.org/10.3892/ol.2020.11417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tirosh A, Mukherjee S, Lack J et al (2019) Distinct genome-wide methylation patterns in sporadic and hereditary nonfunctioning pancreatic neuroendocrine tumors. Cancer 125:1247–1257. https://doi.org/10.1002/cncr.31930

    Article  CAS  PubMed  Google Scholar 

  63. Sakurai T, Isogaya K, Sakai S et al (2016) RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene 35:5000–5009. https://doi.org/10.1038/onc.2016.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sailer V, Eng KW, Zhang T et al (2019) Integrative molecular analysis of patients with advanced and metastatic cancer. JCO Precis Oncol. https://doi.org/10.1200/po.19.00047

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang Y, Park JW, Bebee TW et al (2016) Determination of a comprehensive alternative splicing regulatory network and combinatorial regulation by key factors during the epithelial-to-mesenchymal transition. Mol Cell Biol 36:1704–1719. https://doi.org/10.1128/mcb.00019-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shen D, Jiang Y, Li J et al (2020) The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/β-catentin signaling. Surg Oncol 34:31–39. https://doi.org/10.1016/j.suronc.2020.02.011

    Article  PubMed  Google Scholar 

  67. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Warzecha CC, Shen S, Xing Y, Carstens RP (2009) The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol 6:546–562. https://doi.org/10.4161/rna.6.5.9606

    Article  CAS  PubMed  Google Scholar 

  69. Warzecha CC, Jiang P, Amirikian K et al (2010) An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 29:3286–3300. https://doi.org/10.1038/emboj.2010.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Radine C, Peters D, Reese A et al (2020) The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53–p21-axis. Cell Death Differ 27:1274–1285. https://doi.org/10.1038/s41418-019-0414-6

    Article  CAS  PubMed  Google Scholar 

  71. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  72. Bafico A, Liu G, Goldin L et al (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6:497–506. https://doi.org/10.1016/j.ccr.2004.09.032

    Article  CAS  PubMed  Google Scholar 

  73. Cowling VH, D’Cruz CM, Chodosh LA, Cole MD (2007) c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol Cell Biol 27:5135–5146. https://doi.org/10.1128/mcb.02282-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mikheev AM, Mikheeva SA, Maxwell JP et al (2008) Dickkopf-1 mediated tumor suppression in human breast carcinoma cells. Breast Cancer Res Treat 112:263–273. https://doi.org/10.1007/s10549-007-9867-2

    Article  CAS  PubMed  Google Scholar 

  75. Matsuda Y, Schlange T, Oakeley EJ et al (2009) WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res. https://doi.org/10.1186/bcr2317

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mino T, Takeuchi O (2018) Post-transcriptional regulation of immune responses by RNA binding proteins. Proc Japan Acad Ser B Phys Biol Sci 94:248–258

    Article  CAS  Google Scholar 

  77. Maeda K, Akira S (2017) Regulation of mRNA stability by CCCH-type zinc-finger proteins in immune cells. Int Immunol 29:149–155. https://doi.org/10.1093/intimm/dxx015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lu L-F, Zhang C, Zhou X-Y et al (2020) Zebrafish RBM47 promotes lysosome-dependent degradation of MAVS to inhibit IFN induction. J Immunol 205:1819–1829. https://doi.org/10.4049/jimmunol.1901387

    Article  CAS  PubMed  Google Scholar 

  79. Macklon NS, Geraedts JPM, Fauser BCJM (2002) Conception to ongoing pregnancy: the “black box” of early pregnancy loss. Hum Reprod Update 8:333–343. https://doi.org/10.1093/humupd/8.4.333

    Article  CAS  PubMed  Google Scholar 

  80. Diskin MG, Parr MH, Morris DG (2012) Embryo death in cattle: an update. Reprod Fertil Dev 24:244–251

    Article  Google Scholar 

  81. Andrabi SMH, Maxwell WMC (2007) A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim Reprod Sci 99:223–243

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Department of Biotechnology, Government of India (BT/PR15178/MED/31/313/2015). P.K.M.S was supported by University Grants Commission, India and V.S is funded by Indian Council of Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

PKMS, AS, and SAB had the idea for the article. PKMS and VS performed the literature search and prepared the original draft. SAB critically revised and edited the draft.

Corresponding author

Correspondence to Sharmila A. Bapat.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivalingappa, P.K.M., Sharma, V., Shiras, A. et al. RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem 476, 4493–4505 (2021). https://doi.org/10.1007/s11010-021-04256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04256-5

Keywords

Navigation