Skip to main content

Advertisement

Log in

Reversal of cisplatin sensitization and abrogation of cisplatin-enriched cancer stem cells in 5-8F nasopharyngeal carcinoma cell line through a suppression of Wnt/β-catenin-signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nasopharyngeal carcinoma (NPC) is one of the rare cancers in western countries but predominant in Southeast Asian countries including Thailand. One major cause for failure of NPC chemotherapeutic treatments is reportedly correlated with the elevation of cancer stem cell (CSC) fractions. Thus, this present study aims to investigate the effect of cisplatin (CDDP) treatment on the enrichment of cancer stem-like cells (CSCs) and its associated signaling pathway in EBV-negative NPC cells. Cisplatin-pretreated 5-8F NPC cells (5-8F CDDP) were first generated by treating the cells with 0.5 μM cisplatin for 48 h. After the instant treatment, 5-8F CDDP showed increased IC50 values, demonstrating a decrease in CDDP sensitization. Besides, the proportion of NPC cells with cancer stem-like phenotypes comprising side population (SP), key stemness-related gene expressions including SOX2, ALDH1, CD24 was significantly enhanced. Additionally, 5-8F CDDP displayed the upregulation of β-catenin gene, suggesting its association with the CSC-initiating mechanism. Furthermore, a tankyrase inhibitor for Wnt/β-catenin pathway, XAV939, substantially reduced CSCs and retrieved the cisplatin sensitivity in 5-8F CDDP. This confirms that the Wnt/β-catenin signaling is accountable for rising of the CSC population in EBV-negative NPC. Finally, the combined treatment of CDDP and XAV939 exhibited lower 5-8F CDDP cell viability compared to the treatment of CDDP alone, suggesting the reversal of cisplatin sensitization. In conclusion, the enhancement of CSCs in 5-8F NPC cells caused by the instant cisplatin treatment is initially mediated through the upregulation of β-catenin and activation of Wnt/β-catenin signaling pathway. As a result, a primary chemotherapeutic treatment with closely monitoring the targeted Wnt/β-catenin signaling pathway could potentially prevent the development of CSCs and improve the treatment efficiency in NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CSC:

Cancer stem cell

CDDP:

Cisplatin

DMSO:

Dimethyl sulfoxide

EBV:

Epstein Barr virus

FBS:

Fetal bovine serum

HRP:

Horseradish peroxidase

NPC:

Nasopharyngeal carcinoma

PBS:

Phosphate buffer saline

SP:

Side population

SEM:

Stand error of mean

References

  1. Spano JP, Busson P, Atlan D, Bourhis J, Pignon JP, Esteban C, Armand JP (2003) Nasopharyngeal carcinomas: an update. Eur J Cancer 39:2121–2135. https://doi.org/10.1016/S0959-8049(03)00367-8

    Article  PubMed  Google Scholar 

  2. Razak AR, Siu LL, Liu F-F, Ito E, O’Sullivan B, Chan K (2010) Nasopharyngeal carcinoma: the next challenges. Eur J Cancer 46:1967–1978

    Article  Google Scholar 

  3. Jia W-H, Qin H-D (2012) Non-viral environmental risk factors for nasopharyngeal carcinoma: a systematic review. Semin Cancer Biol 22:117–126. https://doi.org/10.1016/j.semcancer.2012.01.009

    Article  PubMed  Google Scholar 

  4. Chan KC, Chan LS, Ip JCY, Lo C, Yip TTC, Ngan RKC, Wong RNS, Lo KW, Ng WT, Lee AWM, Tsao GSW, Kahn M, Lung ML, Mak NK (2015) Therapeutic targeting of CBP/β-catenin signaling reduces cancer stem-like population and synergistically suppresses growth of EBV-positive nasopharyngeal carcinoma cells with cisplatin. Sci Rep 5:9979. https://doi.org/10.1038/srep09979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen Y-A, Wang C-Y, Chuang H-Y, Hwang JJ-J, Chi W-H, Shu C-H, Ho C-Y, Li W-Y, Chen Y-J (2016) CD44 and CD24 coordinate the reprogramming of nasopharyngeal carcinoma cells towards a cancer stem cell phenotype through STAT3 activation. Oncotarget 7:58351–58366. https://doi.org/10.18632/oncotarget.11113

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wei P, Niu M, Pan S, Zhou Y, Shuai C, Wang J, Peng S, Li G (2014) Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem Cell Res Ther 5:44. https://doi.org/10.1186/scrt433

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoe SLL, Tan LP, Jamal J, Peh SC, Ng CC, Zhang WC, Ahmad M, Khoo ASB (2014) Evaluation of stem-like side population cells in a recurrent nasopharyngeal carcinoma cell line. Cancer Cell Int 14:101. https://doi.org/10.1186/s12935-014-0101-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang R, Niu X, Huang Y, Wang X (2016) β-Catenin is important for cancer stem cell generation and tumorigenic activity in nasopharyngeal carcinoma. Acta Biochim Biophys Sin 48:229–237. https://doi.org/10.1093/abbs/gmv134

    Article  CAS  PubMed  Google Scholar 

  9. Lun SW-M, Cheung ST, Cheung PFY, To K-F, Woo JK-S, Choy K-W, Chow C, Cheung CC-M, Chung GT-Y, Cheng AS-H, Ko C-W, Tsao S-W, Busson P, Ng MH-L, Lo K-W (2012) CD44+ cancer stem-like cells in EBV-associated nasopharyngeal carcinoma. PLoS One 7:e52426. https://doi.org/10.1371/journal.pone.0052426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng Y, Cheung AKL, Ko JMY, Phoon YP, Chiu PM, Lo PHY, Waterman ML, Lung ML (2013) Physiological β-catenin signaling controls self-renewal networks and generation of stem-like cells from nasopharyngeal carcinoma. BMC Cell Biol 14:44. https://doi.org/10.1186/1471-2121-14-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie SL, Fan S, Zhang SY, Chen WX, Li QX, Pan GK, Zhang HQ, Wang WW, Weng B, Zhang Z, Li JS (2018) SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β-catenin pathway. Int J Cancer 142:1252–1265. https://doi.org/10.1002/ijc.31134

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Luo F, Li J, Zhong X, Liu K (2016) Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol 48:1333–1340. https://doi.org/10.3892/ijo.2016.3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156. https://doi.org/10.1038/nrc2789

    Article  CAS  PubMed  Google Scholar 

  14. Lin T, Luo J, Hu J, Dai N, He Y (2016) Cancer stem cell markers in nasopharyngeal carcinoma and its relevance for therapy. Curr Trad Med 2:115–123

    Article  CAS  Google Scholar 

  15. De Sousa Melo F, Vermeulen L (2016) Wnt signaling in cancer stem cell biology. Cancers 8:60. https://doi.org/10.3390/cancers8070060

    Article  CAS  Google Scholar 

  16. Huang S-MA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620. https://doi.org/10.1038/nature08356

    Article  CAS  PubMed  Google Scholar 

  17. Perri F, Della Vittoria Scarpati G, Caponigro F, Ionna F, Longo F, Buonopane S, Muto P, Di Marzo M, Pisconti S, Solla R (2019) Management of recurrent nasopharyngeal carcinoma: current perspectives. Onco Targets Ther 12:1583–1591. https://doi.org/10.2147/OTT.S188148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prieto-Vila M, R-u T, Usuba W, Kohama I, Ochiya T (2017) Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 18:2574

    Article  Google Scholar 

  19. Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F, Kumar J, Thompson EW, Quinn MA, Findlay JK, Ahmed N (2011) Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 112:2850–2864. https://doi.org/10.1002/jcb.23199

    Article  CAS  PubMed  Google Scholar 

  20. Nör C, Zhang Z, Warner KA, Bernardi L, Visioli F, Helman JI, Roesler R, Nör JE (2014) Cisplatin induces Bmi-1 and enhances the stem cell fraction in head and neck cancer. Neoplasia 16:137

    Article  Google Scholar 

  21. Wang L, Liu X, Ren Y, Zhang J, Chen J, Zhou W, Guo W, Wang X, Chen H, Li M, Yuan X, Zhang X, Yang J, Wu C (2017) Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis 8:e2746–e2746. https://doi.org/10.1038/cddis.2016.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miow QH, Tan TZ, Ye J, Lau JA, Yokomizo T, Thiery JP, Mori S (2015) Epithelial–mesenchymal status renders differential responses to cisplatin in ovarian cancer. Oncogene 34:1899–1907. https://doi.org/10.1038/onc.2014.136

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Liu W, Feng X, Wang L, Jiang X, Liu D, Zhang L, Zhu B, Zhou W, Jia W (2012) Identification of ABCG2+ cells in nasopharyngeal carcinoma cells. Oncol Rep 27:1177–1187

    Article  CAS  Google Scholar 

  24. Wu C, Alman BA (2008) Side population cells in human cancers. Cancer Lett 268:1–9. https://doi.org/10.1016/j.canlet.2008.03.048

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Bao Q, Schwarz B, Zhao L, Mysliwietz J, Ellwart J, Renner A, Hirner H, Niess H, Camaj P, Angele M, Gros S, Izbicki J, Jauch KW, Nelson PJ, Bruns CJ (2014) Stem cell-like side populations in esophageal cancer: a source of chemotherapy resistance and metastases. Stem Cells Dev 23:103. https://doi.org/10.1089/scd.2013.0103

    Article  CAS  Google Scholar 

  26. Lun SW, Cheung ST, Cheung PF, To KF, Woo JK, Choy KW, Chow C, Cheung CC, Chung GT, Cheng AS, Ko CW, Tsao SW, Busson P, Ng MH, Lo KW (2012) CD44+ cancer stem-like cells in EBV-associated nasopharyngeal carcinoma. PLoS One 7:0052426. https://doi.org/10.1371/journal.pone.0052426

    Article  CAS  Google Scholar 

  27. Yu F, Sim AC, Li C, Li Y, Zhao X, Wang DY, Loh KS (2013) Identification of a subpopulation of nasopharyngeal carcinoma cells with cancer stem-like cell properties by high aldehyde dehydrogenase activity. Laryngoscope 123:24003. https://doi.org/10.1002/lary.24003

    Article  CAS  Google Scholar 

  28. Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106. https://doi.org/10.1038/nrclinonc.2010.196

    Article  CAS  PubMed  Google Scholar 

  29. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850. https://doi.org/10.1038/nature03319

    Article  CAS  PubMed  Google Scholar 

  30. Teng Y, Wang X, Wang Y, Ma D (2010) Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun 392:373–379. https://doi.org/10.1016/j.bbrc.2010.01.028

    Article  CAS  PubMed  Google Scholar 

  31. Lee SH, Koo BS, Kim JM, Huang S, Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH, Lim YC (2014) Wnt/β-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol 234:99–107. https://doi.org/10.1002/path.4383

    Article  CAS  PubMed  Google Scholar 

  32. Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C (2006) Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 25:4361–4369. https://doi.org/10.1038/sj.onc.1209470

    Article  CAS  PubMed  Google Scholar 

  33. Lonardo E, Hermann Patrick C, Mueller M-T, Huber S, Balic A, Miranda-Lorenzo I, Zagorac S, Alcala S, Rodriguez-Arabaolaza I, Ramirez Juan C, Torres-Ruíz R, Garcia E, Hidalgo M, Cebrián David Á, Heuchel R, Löhr M, Berger F, Bartenstein P, Aicher A, Heeschen C (2011) Nodal/activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 9:433–446. https://doi.org/10.1016/j.stem.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  34. Roy S, Roy S, Kar M, Chakraborty A, Kumar A, Delogu F, Asthana S, Hande MP, Banerjee B (2019) Combined treatment with cisplatin and the tankyrase inhibitor XAV-939 increases cytotoxicity, abrogates cancer-stem-like cell phenotype and increases chemosensitivity of head-and-neck squamous-cell carcinoma cells. Mutat Res 846:503084. https://doi.org/10.1016/j.mrgentox.2019.503084

    Article  CAS  PubMed  Google Scholar 

  35. Lin W, Yip YL, Jia L, Deng W, Zheng H, Dai W, Ko JMY, Lo KW, Chung GTY, Yip KY, Lee S-D, Kwan JS-H, Zhang J, Liu T, Chan JY-W, Kwong DL-W, Lee VH-F, Nicholls JM, Busson P, Liu X, Chiang AKS, Hui KF, Kwok H, Cheung ST, Cheung YC, Chan CK, Li B, Cheung AL-M, Hau PM, Zhou Y, Tsang CM, Middeldorp J, Chen H, Lung ML, Tsao SW (2018) Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nat Commun 9:4663. https://doi.org/10.1038/s41467-018-06889-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand for kindly providing flow cytometry equipment (BD FACS Canto). We also would like to thank Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand for providing laboratory equipment.

Funding

This research is supported by Kasetsart University Research and Development Institute (Grant no. P-3.1(D)41.61) to PK and National Research Council Thailand and Mahidol University to TJ. SS received the 50th Faculty of Science Scholarship from Faculty of Science, Kasetsart University, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Sirorut Sinnung: Methodology, investigation, data curation, writing—original draft. Tavan Janvilisri: Resources, writing—review and editing, funding acquisition. Pichamon Kiatwuthinon: Conceptualization, supervision, writing—review and editing, project administration, funding acquisition

Corresponding author

Correspondence to Pichamon Kiatwuthinon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

(a) A cell viability of the 5-8F cells treated with 0.5 and 1 μM of CDDP at 48-h incubation. Data is presented as mean ± SEM from three independent experiments. Statistical analysis was performed using an unpaired t-test, *p < 0.05, ns not statistically significant. (b) The time-course relative gene expressions of drug efflux pumps including ABCB1, ABCC1, ABCC2 and ABCG2 in the 5-8F CDDP. The relative gene expressions were significantly upregulated in 5-8F CDDP at 48-hour incubation compared to 5-8F NPC cells. Values are presented as mean ± SEM from three independent biological replicates. An unpaired t-test was used in the statistical analysis between 5-8FCDDP and 5-8F NPC cells, *p < 0.05, **p < 0.01. (c) Time-course western blot analysis of ABCB1 in 5-8F CDDP cells revealed a significant increase in the expression of ABCB1 from 24 to 48 h that confirmed the relative gene expression result. The expression of GAPDH was used as a loading control. Values are presented as mean ± SEM from three independent experiments. An unpaired t-test is used in the statistical analysis between 5-8FCDDP and 5-8F NPC cells, *p < 0.05. The intensities of protein bands were determined by using ImageJ program (Version 1.52r) (https://imagej.nih.gov/) (DOCX 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinnung, S., Janvilisri, T. & Kiatwuthinon, P. Reversal of cisplatin sensitization and abrogation of cisplatin-enriched cancer stem cells in 5-8F nasopharyngeal carcinoma cell line through a suppression of Wnt/β-catenin-signaling pathway. Mol Cell Biochem 476, 1663–1672 (2021). https://doi.org/10.1007/s11010-020-04045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04045-6

Keywords

Navigation