Skip to main content
Log in

Endoplasmic reticulum stress and autophagy are involved in adipocyte-induced fibrosis in hepatic stellate cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Liver fibrosis, with the characterization of progressive accumulation of extracellular matrix (ECM), is the common pathologic feature in the process of chronic liver disease. Hepatic stellate cells (HSCs) which are activated and differentiate into proliferative and contractile myofibroblasts are recognized as the main drivers of fibrosis. Obesity-related adipocytokine dysregulation is known to accelerate liver fibrosis progression, but the direct fibrogenic effect of mature adipocytes on HSCs has been rarely reported. Therefore, the purpose of this study was to explore the fibrogenic effect of adipocyte 3T3-L1 cells on hepatic stellate LX-2 cells. The results showed that incubating LX-2 cells with the supernatant of 3T3-L1 adipocytes triggered the expression of ECM related proteins, such as α-smooth muscle actin (α-SMA), type I collagen (CO-I), and activated TGF β/Smad2/3 signaling pathway in LX-2 cells. In addition, 3T3-L1 cells inhibited insulin sensitivity, activated endoplasmic reticulum stress and autophagy to promote the development of fibrosis. These results supported the notion that mature adipocytes can directly activate hepatic stellate cells, and the establishment of an in vitro model of adipocytes on HSCs provides an insight into screening of drugs for liver diseases, such as nonalcoholic fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HSC:

Hepatic stellate cells

α-SMA:

α-Smooth muscle actin

CO-I:

Type I collagen

ECM:

Extracellular matrix

IR:

Insulin resistance

IBMX:

3-Isobutyl-1-methylxanthine

IRS1:

Insulin receptor substrate

CHOP:

C/EBP homologous protein

GRP78:

Glucose-regulated protein

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

PERK:

PKR-like ER kinase

eIF2α:

Eukaryotic initiation factor 2α

ER:

Endoplasmic reticulum

References

  1. Sato T, Vargas D, Miyazaki K, Uchida K, Ariyani W, Miyazaki M, Okada J, Lizcano F, Koibuchi N, Shimokawa N (2020) EID1 suppresses lipid accumulation by inhibiting the expression of GPDH in 3T3-L1 preadipocytes. J Cell Physiol. https://doi.org/10.1002/jcp.29567

    Article  PubMed  Google Scholar 

  2. Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A (2020) Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in non-alcoholic fatty liver disease. Gastroenterology. https://doi.org/10.1053/j.gastro.2019.12.054

    Article  PubMed  Google Scholar 

  3. Bluher M (2020) Metabolically healthy obesity. Endocr Rev. https://doi.org/10.1210/endrev/bnaa004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cordeiro A, Costa R, Andrade N, Silva C, Canabrava N, Pena MJ, Rodrigues I, Andrade S, Ramalho A (2020) Does adipose tissue inflammation drive the development of non-alcoholic fatty liver disease in obesity? Clin Res Hepatol Gastroenterol. https://doi.org/10.1016/j.clinre.2019.10.001

    Article  PubMed  Google Scholar 

  5. Rom O, Xu G, Guo Y, Zhu Y, Wang H, Zhang J, Fan Y, Liang W, Lu H, Liu Y, Aviram M, Liu Z, Kim S, Liu W, Wang X, Chen YE, Villacorta L (2019) Nitro-fatty acids protect against steatosis and fibrosis during development of nonalcoholic fatty liver disease in mice. EBioMedicine 41(2019):62–72. https://doi.org/10.1016/j.ebiom.2019.02.019

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ooi GJ, Mgaieth S, Eslick GD, Burton PR, Kemp WW, Roberts SK, Brown WA (2018) Systematic review and meta-analysis: non-invasive detection of non-alcoholic fatty liver disease related fibrosis in the obese. Obes Rev 19(2):281–294. https://doi.org/10.1111/obr.12628

    Article  CAS  PubMed  Google Scholar 

  7. Ye H, Zhang J, Chen X, Wu P, Chen L, Zhang G (2020) Ursodeoxycholic acid alleviates experimental liver fibrosis involving inhibition of autophagy. Life Sci 242:117175. https://doi.org/10.1016/j.lfs.2019.117175

    Article  CAS  PubMed  Google Scholar 

  8. Cheng F, Su S, Zhu X, Jia X, Tian H, Zhai X, Guan W, Zhou Y (2020) Leptin promotes methionine adenosyltransferase 2A expression in hepatic stellate cells by the downregulation of E2F–4 via the beta-catenin pathway. FASEB J 34:5578–5589. https://doi.org/10.1096/fj.201903021RR

    Article  CAS  PubMed  Google Scholar 

  9. He Z, Yang D, Fan X, Zhang M, Li Y, Gu X (2020) Yang M (2020) The roles and mechanisms of lncRNAs in liver fibrosis. Int J Mol Sci 21:1482. https://doi.org/10.3390/ijms21041482

    Article  CAS  PubMed Central  Google Scholar 

  10. Öztürk Akcora B, Vassilios Gabriël A, Ortiz-Perez A, Bansal R (2020) Pharmacological inhibition of STAT3 pathway ameliorates acute liver injury in vivo via inactivation of inflammatory macrophages and hepatic stellate cells. FASEB BioAdv 2:77–89. https://doi.org/10.1096/fba.2019-00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu N, Feng J, Lu X, Yao Z, Liu Q, Lv Y, Han Y, Deng J, Zhou Y (2019) Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-beta1/Smad3 and TGF-beta1/p38 MAPK pathways. Mediators Inflamm 2019:6175091. https://doi.org/10.1155/2019/6175091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao Y, Wang Z, Feng D, Zhao H, Lin M, Hu Y, Zhang N, Lv L, Gao Z, Zhai X, Tian X, Yao J (2019) p66Shc contributes to liver fibrosis through the regulation of mitochondrial reactive oxygen species. Theranostics 9:1510–1522. https://doi.org/10.7150/thno.29620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139. https://doi.org/10.1016/j.mce.2009.08.018

    Article  CAS  PubMed  Google Scholar 

  14. Mak LY, Lee CH, Cheung KS, Wong DKH, Liu F, Hui RWH, Fung J, Xu A, Lam KSL, Yuen MF, Seto WK (2019) Association of adipokines with hepatic steatosis and fibrosis in chronic hepatitis B patients on long-term nucleoside analogue. Liver Int 39:1217–1225. https://doi.org/10.1111/liv.14104

    Article  CAS  PubMed  Google Scholar 

  15. Tan Z, Liu Q, Jiang R, Lv L, Shoto SS, Maillet I, Quesniaux V, Tang J, Zhang W, Sun B, Ryffel B (2018) Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol Immunol 15:388–398. https://doi.org/10.1038/cmi.2016.63

    Article  CAS  PubMed  Google Scholar 

  16. Anfuso B, Giraudi PJ, Tiribelli C, Rosso N (2019) Silybin modulates collagen turnover in an in vitro model of NASH. Molecules 24:1280. https://doi.org/10.3390/molecules24071280

    Article  CAS  PubMed Central  Google Scholar 

  17. Mollica MP, Lionetti L, Putti R, Cavaliere G, Gaita M, Barletta A (2011) From chronic overfeeding to hepatic injury: role of endoplasmic reticulum stress and inflammation. Nutr Metab Cardiovasc Dis 21:222–230. https://doi.org/10.1016/j.numecd.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto K, Kamo S, Takada Y, Ieda A, Yamashita T, Sato T, Zaima N, Moriyama T (2018) Soyasapogenols reduce cellular triglyceride levels in 3T3-L1 mouse adipocyte cells by accelerating triglyceride lipolysis. Biochem Biophys Rep 16:44–49. https://doi.org/10.1016/j.bbrep.2018.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  19. Izumi M, Yoshida T, Nakamura T, Wakamori M (2020) Paeonol, an ingredient of Kamishoyosan, reduces intracellular lipid accumulation by inhibiting glucocorticoid receptor activity in 3T3-L1 cells. Nutrients 12:309. https://doi.org/10.3390/nu12020309

    Article  CAS  PubMed Central  Google Scholar 

  20. Li L, Yang C, Yang J, Li H, Zhang B, Zhou H, Hu S, Wang K, Huang C, Meng X, Zhou H, Zhang L, Li J, Xu T (2019) ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. Eur J Pharmacol 865:172787. https://doi.org/10.1016/j.ejphar.2019.172787

    Article  CAS  PubMed  Google Scholar 

  21. Arab JP, Cabrera D, Sehrawat TS, Jalan-Sakrikar N, Verma VK, Simonetto D, Cao S, Yaqoob U, Leon J, Freire M, Vargas JI, De Assuncao TM, Kwon JH, Guo Y, Kostallari E, Cai Q, Kisseleva T, Oh Y, Arrese M, Huebert RC, Shah VH (2020) Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12. J Hepatol. https://doi.org/10.1016/j.jhep.2020.02.005

    Article  PubMed  Google Scholar 

  22. Woo M, Seol BG, Kang KH, Choi YH, Cho EJ, Noh JS (2020) Effects of collagen peptides from skate (Raja kenojei) skin on improvements of the insulin signaling pathway via attenuation of oxidative stress and inflammation. Food Funct. https://doi.org/10.1039/c9fo02667c

    Article  PubMed  Google Scholar 

  23. Jones A, Danielson KM, Benton MC, Ziegler O, Shah R, Stubbs RS, Das S, Macartney-Coxson D (2017) miRNA signatures of insulin resistance in obesity. Obesity (Silver Spring) 25:1734–1744. https://doi.org/10.1002/oby.21950

    Article  CAS  Google Scholar 

  24. Han B, Lv Z, Zhang X, Lv Y, Li S, Wu P, Yang Q, Li J, Qu B, Zhang Z (2020) Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. Environ Pollut 259:113870. https://doi.org/10.1016/j.envpol.2019.113870

    Article  CAS  PubMed  Google Scholar 

  25. Otoda T, Takamura T, Misu H, Ota T, Murata S, Hayashi H, Takayama H, Kikuchi A, Kanamori T, Shima K, Lan F, Takeda T, Kurita S, Ishikura K, Kita Y, Iwayama K, Kato K, Uno M, Takeshita Y, Yamamoto M, Tokuyama K, Iseki S, Tanaka K, Kaneko S (2013) Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes 62:811–824. https://doi.org/10.2337/db11-1652/-/DC1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yilmaz E (2017) Endoplasmic reticulum stress and obesity. Adv Exp Med Biol 960:261–276. https://doi.org/10.1007/978-3-319-48382-5_11

    Article  CAS  PubMed  Google Scholar 

  27. Cheng YC, Chang JM, Chen CA, Chen HC (2015) Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role. Exp Biol Med (Maywood) 240:467–476. https://doi.org/10.1177/1535370214553772

    Article  CAS  Google Scholar 

  28. Ooi GJ, Burton PR, Doyle L, Wentworth JM, Bhathal PS, Sikaris K, Cowley MA, Roberts SK, Kemp W, O’Brien PE, Brown WA (2016) Modified thresholds for fibrosis risk scores in nonalcoholic fatty liver disease are necessary in the obese. Obes Surg 27:115–125. https://doi.org/10.1007/s11695-016-2246-5

    Article  Google Scholar 

  29. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218. https://doi.org/10.1172/jci200524282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dludla PV, Jack B, Viraragavan A, Pheiffer C, Johnson R, Louw J, Muller CJF (2018) A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol Rep 5:1014–1020. https://doi.org/10.1016/j.toxrep.2018.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shim EH, Lee MS, Lee J-A, Lee H (2017) Do In Seung Gi-Tang extract suppresses adipocyte differentiation in 3T3-L1 cells. Mol Med Rep 15:3549–3554. https://doi.org/10.3892/mmr.2017.6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Phaosri M, Jantrapirom S, Na Takuathung M, Soonthornchareonnon N, Sireeratawong S, Buacheen P, Pitchakarn P, Nimlamool W, Potikanond S (2019) Salacia chinensis L. Stem extract exerts antifibrotic effects on human hepatic stellate cells through the inhibition of the TGF-β1-induced SMAD2/3 signaling pathway. Int J Mol Sci 20:6314. https://doi.org/10.3390/ijms20246314

    Article  CAS  PubMed Central  Google Scholar 

  33. Alsamman M, Sterzer V, Meurer SK, Sahin H, Schaeper U, Kuscuoglu D, Strnad P, Weiskirchen R, Trautwein C, Scholten D (2018) Endoglin in human liver disease and murine models of liver fibrosis-A protective factor against liver fibrosis. Liver Int 38:858–867. https://doi.org/10.1111/liv.13595

    Article  CAS  PubMed  Google Scholar 

  34. Li C, Grider JR, Murthy KS, Bohl J, Rivet E, Wieghard N, Kuemmerle JF (2020) Endoplasmic reticulum stress in subepithelial myofibroblasts increases the TGF-beta1 activity that regulates fibrosis in Crohn’s Disease. Inflamm Bowel Dis. https://doi.org/10.1093/ibd/izaa015

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cao SS (2016) Epithelial ER stress in Crohnʼs Disease and Ulcerative Colitis. Inflamm Bowel Dis 22:984–993. https://doi.org/10.1097/mib.0000000000000660

    Article  PubMed  Google Scholar 

  36. Harding H, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274. https://doi.org/10.1038/16729

    Article  CAS  PubMed  Google Scholar 

  37. Zehao H, Shengxiao Z, Can W, Rong Z, Jun Q, Qiwen B, Jinfeng L, Xiaoqing L, Henghu Z (2020) Downregulated long non-coding RNA FOXD3-AS1 promotes 2 endoplasmic reticulum stress-induced apoptosis by inhibiting RCN1 3 via let-7e-5p in nasopharyngeal carcinoma. Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00352.2019

    Article  Google Scholar 

  38. Chaveroux C, Carraro V, Canaple L, Averous J, Maurin A, Jousse C, Muranishi Y, Parry L, Mesclon F, Gatti E, Mallet J, Ravassard P, Pierre P, Fafournoux P, Bruhat A (2015) In vivo imaging of the spatiotemporal activity of the eIF2a-ATF4 signaling pathway: Insights into stress and related disorders. Sci Signal 8:rs5.

  39. Kammoun HL, Hainault I, Ferré P, Foufelle F (2009) Nutritional related liver disease: targeting the endoplasmic reticulum stress. Curr Opin Clin Nut 12:575–582. https://doi.org/10.1097/MCO.0b013e32833189db

    Article  CAS  Google Scholar 

  40. Seki E, Brenner DA (2015) Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci 22:512–518. https://doi.org/10.1002/jhbp.245

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang R, Chu K, Zhao N, Wu J, Ma L, Zhu C, Chen X, Wei G, Liao M (2019) Corilagin alleviates nonalcoholic fatty liver disease in high-fat diet-induced C57BL/6 mice by ameliorating oxidative stress and restoring autophagic flux. Front Pharmacol 10:1693. https://doi.org/10.3389/fphar.2019.01693

    Article  CAS  PubMed  Google Scholar 

  42. He Y, Jin L, Wang J, Yan Z, Chen T, Zhao Y (2015) Mechanisms of fibrosis in acute liver failure. Liver Int 35:1877–1885. https://doi.org/10.1111/liv.12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by China Postdoctoral Science Foundation (NO. 2018M640611), Shandong Provincial Natural Science Foundation (NO. ZR2019BD026), Shandong Provincial postdoctoral innovation Foundation (No. 201902036) and Affiliated Hospital of Qingdao University Youth Foundation (NO.3104).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.L.; methodology, X.L. and Y.L.; software, Y.W.;data curation, X.L. and Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.G. and Y.L.; funding acquisition, Y.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yunliang Guo.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, X., Wang, Y. et al. Endoplasmic reticulum stress and autophagy are involved in adipocyte-induced fibrosis in hepatic stellate cells. Mol Cell Biochem 476, 2527–2538 (2021). https://doi.org/10.1007/s11010-020-03990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03990-6

Keywords

Navigation