Skip to main content
Log in

SRGN, a new identified shear-stress-responsive gene in endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial cells (ECs) play an important role in the pathogenesis of cardiovascular disease, especially atherosclerosis (AS). The abnormal wall shear stress (WSS) which directly contacts with ECs is the key stimulating factor leading to AS. However, the underlying mechanism of ECs responding to WSS is still incompletely understood. This study aims to explore the novel mechano-sensitive genes and its potential mechanism in response to WSS in ECs by employing bioinformatics methods based on previously available high-throughput data from zebrafish embryos, both before and after blood flow formation. Six common differentially expressed genes (DEGs) (SRGN, SLC12A3, SLC25A4, PVALB1, ITGAE.2, zgc:198419) were selected out from two high-throughput datasets (GSE126617 and GSE20707) in the GEO database. Among them, SRGN was chosen for further verification through the in vitro shear stress loading experiments with human umbilical vein endothelial cells (HUVECs) and the in vivo partial ligation of carotid artery in mice. Our data indicated that low shear stress (LSS) could enhance the expression of SRGN via the PKA/CREB-dependent signaling pathway. The proportion of Ki67+ cells and the concentration of nitric oxide (NO) were high in SRGN high expression cells, suggesting that SRGN may be involved in the proliferation of HUVECs. Furthermore, in the partial ligation of the carotid artery mice model, we observed that the expression of SRGN was significantly increased in atherosclerotic plaques induced by abnormal shear stress. Taken together, this study demonstrated that SRGN is a key gene in the response of ECs to WSS and could be involved in AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chatzizisis YS, Coskun AU, Jonas M et al (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393. https://doi.org/10.1016/j.jacc.2007.02.059

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Luo JY, Li BC et al (2016) Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540:579. https://doi.org/10.1038/nature20602

    Article  CAS  PubMed  Google Scholar 

  3. Beech DJ, Kalli AC (2019) Force sensing by piezo channels in cardiovascular health and disease. Arterioscler Thromb Vasc Biol 39:2228–2239. https://doi.org/10.1161/Atvbaha.119.313348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chávez MN, Aedo G, Fierro FA et al (2016) Zebrafish as an emerging model organism to study angiogenesis in development and regeneration. Front Physiol. https://doi.org/10.3389/fphys.2016.00056

    Article  PubMed  PubMed Central  Google Scholar 

  5. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230:278–301. https://doi.org/10.1006/dbio.2000.9995

    Article  CAS  PubMed  Google Scholar 

  6. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. https://doi.org/10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol 1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barrett T, Edgar R (2006) Mining microarray data at NCBI's gene expression omnibus (GEO)*. Methods Mol Biol 338:175–190. https://doi.org/10.1385/1-59745-097-9:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55. https://doi.org/10.1016/j.matbio.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolset SO, Tveit H (2008) Serglycin–structure and biology. Cell Mol Life Sci 65:1073–1085. https://doi.org/10.1007/s00018-007-7455-6

    Article  CAS  PubMed  Google Scholar 

  11. Kolset SO, Pejler G (2011) Serglycin: a structural and functional chameleon with wide impact on immune cells. J Immunol 187:4927–4933. https://doi.org/10.4049/jimmunol.1100806

    Article  CAS  PubMed  Google Scholar 

  12. Kolset SO, Prydz K, Pejler G (2004) Intracellular proteoglycans. Biochem J 379:217–227. https://doi.org/10.1042/BJ20031230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schick BP, Gradowski JF, San Antonio JD (2001) Synthesis, secretion, and subcellular localization of serglycin proteoglycan in human endothelial cells. Blood 97:449–458. https://doi.org/10.1182/blood.v97.2.449

    Article  CAS  PubMed  Google Scholar 

  14. Baghy K, Tatrai P, Regos E et al (2016) Proteoglycans in liver cancer. World J Gastroenterol 22:379–393. https://doi.org/10.3748/wjg.v22.i1.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Deng Y, Zheng G et al (2017) SRGN-TGFbeta2 regulatory loop confers invasion and metastasis in triple-negative breast cancer. Oncogenesis 6:e360. https://doi.org/10.1038/oncsis.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu Y, Xu J, Yang Y et al (2018) SRGN promotes colorectal cancer metastasis as a critical downstream target of HIF-1alpha. Cell Physiol Biochem 48:2429–2440. https://doi.org/10.1159/000492657

    Article  CAS  PubMed  Google Scholar 

  17. Xin-Jian L, Choon Kiat O, Yun C et al (2015) Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis. Cancer Res 71:3162–3172. https://doi.org/10.1158/0008-5472.CAN-10-3557

    Article  CAS  Google Scholar 

  18. Guo JY, Hsu HS, Tyan SW et al (2017) Serglycin in tumor microenvironment promotes non-small cell lung cancer aggressiveness in a CD44-dependent manner. Oncogene 36:2457–2471. https://doi.org/10.1038/onc.2016.404

    Article  CAS  PubMed  Google Scholar 

  19. D'Ascola A, Scuruchi M, Avenoso A et al (2018) Serglycin is involved in inflammatory response in articular mouse chondrocytes. Biochem Biophys Res Commun 499:506–512. https://doi.org/10.1016/j.bbrc.2018.03.178

    Article  CAS  PubMed  Google Scholar 

  20. Reine TM, Tram Thu V, Jenssen TG et al (2014) Serglycin secretion is part of the inflammatory response in activated primary human endothelial cells in vitro. Biochim Biophys Acta 1840:2498–2505

    Article  CAS  PubMed  Google Scholar 

  21. Theocharis AD, Karamanos NK (2019) Proteoglycans remodeling in cancer: underlying molecular mechanisms. Matrix Biol 75–76:220–259. https://doi.org/10.1016/j.matbio.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  22. Chen AT, Zon LI (2009) Zebrafish blood stem cells. J Cell Biochem 108:35–42. https://doi.org/10.1002/jcb.22251

    Article  CAS  PubMed  Google Scholar 

  23. Gong B, Li Z, Xiao W et al (2019) Sec14l3 potentiates VEGFR2 signaling to regulate zebrafish vasculogenesis. Nat Commun 10:1606. https://doi.org/10.1038/s41467-019-09604-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao X, Zhao L, Tian T et al (2010) Interruption of cenph causes mitotic failure and embryonic death, and its haploinsufficiency suppresses cancer in zebrafish. J Biol Chem 285:27924–27934. https://doi.org/10.1074/jbc.M110.136077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  26. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297. https://doi.org/10.1093/nar/gks042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  28. Jing Z, Pei-Ling L, Chien-Sung T et al (2012) Force-specific activation of Smad1/5 regulates vascular endothelial cell cycle progression in response to disturbed flow. Proc Natl Acad Sci USA 109:7770–7775. https://doi.org/10.1073/pnas.1205476109

    Article  Google Scholar 

  29. Nam D, Ni CW, Rezvan A et al (2009) Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol 297:H1535–H1543. https://doi.org/10.1152/ajpheart.00510.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu S, Liu Y, You T et al (2017) Vascular semaphorin 7A upregulation by disturbed flow promotes atherosclerosis through endothelial β1 integrin. Arterioscler Thromb Vasc Biol 38:335–343. https://doi.org/10.1161/ATVBAHA.117.310491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang K, Chen Y, Zhang T et al (2018) A novel role of Id1 in regulating oscillatory shear stress-mediated lipid uptake in endothelial cells. Ann Biomed Eng 46:849–863. https://doi.org/10.1007/s10439-018-2000-3

    Article  PubMed  Google Scholar 

  32. Tosolini M, Algans C, Pont F et al (2016) Large-scale microarray profiling reveals four stages of immune escape in non-Hodgkin lymphomas. Oncoimmunology 5:e1188246. https://doi.org/10.1080/2162402X.2016.1188246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown DC, Gatter KC (1990) Monoclonal antibody Ki-67: its use in histopathology. Histopathology 17:489–503. https://doi.org/10.1111/j.1365-2559.1990.tb00788.x

    Article  CAS  PubMed  Google Scholar 

  34. Kolluru GK, Sinha S, Majumder S et al (2010) Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: a basis for shear stress mediated angiogenesis. Nitric Oxide 22:304–315. https://doi.org/10.1016/j.niox.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  35. Reine TM, Vuong TT, Rutkovskiy A et al (2015) Serglycin in quiescent and proliferating primary endothelial cells. PLoS One 10:e0145584. https://doi.org/10.1371/journal.pone.0145584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ross R (1990s) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809. https://doi.org/10.1038/362801a0

    Article  CAS  PubMed  Google Scholar 

  37. Hamilton A, Basic V, Andersson S et al (2015) Loss of serglycin promotes primary tumor growth and vessel functionality in the RIP1-Tag2 mouse model for spontaneous insulinoma formation. PLoS One 10:e0126688. https://doi.org/10.1371/journal.pone.0126688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roy A, Femel J, Huijbers EJ et al (2016) Targeting serglycin prevents metastasis in murine mammary carcinoma. PLoS One 11:e0156151. https://doi.org/10.1371/journal.pone.0156151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robinson L, Panayiotakis A, Papas TS et al (1997) ETS target genes: identification of egr1 as a target by RNA differential display and whole genome PCR techniques. Proc Natl Acad Sci U S A 94:7170–7175. https://doi.org/10.1073/pnas.94.14.7170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schick BP (2010) Serglycin proteoglycan deletion in mouse platelets: physiological effects and their implications for platelet contributions to thrombosis, inflammation, atherosclerosis, and metastasis. Prog Mol Biol Transl Sci 93:235–287. https://doi.org/10.1016/S1877-1173(10)93011-1

    Article  CAS  PubMed  Google Scholar 

  41. Meen AJ, Oynebraten I, Reine TM et al (2011) Serglycin is a major proteoglycan in polarized human endothelial cells and is implicated in the secretion of the chemokine GROalpha/CXCL1. J Biol Chem 286:2636–2647. https://doi.org/10.1074/jbc.M110.151944

    Article  CAS  PubMed  Google Scholar 

  42. Woulfe DS, Lilliendahl JK, August S et al (2008) Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus formation in mice. Blood 111:3458–3467. https://doi.org/10.1182/blood-2007-07-104703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meen AJ, Drevon CA, Pejler G et al (2015) Serglycin protects against high fat diet-induced increase in serum LDL in mice. Glycoconj J 32:703–714. https://doi.org/10.1007/s10719-015-9621-7

    Article  CAS  PubMed  Google Scholar 

  44. Schick BP, Petrushina I, Brodbeck KC et al (2001) Promoter regulatory elements and DNase I-hypersensitive sites involved in serglycin proteoglycan gene expression in human erythroleukemia, CHRF 288–11, and HL-60 cells. J Biol Chem 276:24726–24735. https://doi.org/10.1074/jbc.M102958200

    Article  CAS  PubMed  Google Scholar 

  45. Kim PG, Nakano H, Das PP et al (2015) Flow-induced protein kinase A-CREB pathway acts via BMP signaling to promote HSC emergence. J Exp Med 212:633–648. https://doi.org/10.1084/jem.20141514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Csiszar A, Labinskyy N, Smith KE et al (2007) Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells: role of shear stress and the cAMP/protein kinase A pathway. Arterioscler Thromb Vasc Biol 27:776–782. https://doi.org/10.1161/01.ATV.0000259355.77388.13

    Article  CAS  PubMed  Google Scholar 

  47. Fachim HA, Srisawat U, Dalton CF et al (2018) Parvalbumin promoter hypermethylation in postmortem brain in schizophrenia. Epigenomics 10:519–524. https://doi.org/10.2217/epi-2017-0159

    Article  CAS  PubMed  Google Scholar 

  48. Thompson K, Majd H, Dallabona C et al (2016) recurrent de novo dominant mutations in SLC25A4 cause severe early-onset mitochondrial disease and loss of mitochondrial DNA copy number. Am J Hum Genet 99:1405. https://doi.org/10.1016/j.ajhg.2016.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Urwin S, Willows J, Sayer JA (2020) The challenges of diagnosis and management of Gitelman syndrome. Clin Endocrinol (Oxf) 92:3–10. https://doi.org/10.1111/cen.14104

    Article  Google Scholar 

Download references

Funding

This research program was supported by grants from the National Natural Science Foundation of China (31971242), Fundamental Research Funds for Central Universities (2019CDYGZD008, 2019CDXYSG0004), and Chongqing Science and Technology Bureau (cstc2019jcyj-zdxm0033) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

QM, GW, JQ and WG contributed to the study conception and design. QM conducted the experiments and analyzed data, TL, KZ, KQ, YC helped to complete the partial experiments and data analysis. QM, WG, GW, JQ wrote the manuscript with input from all others. NW, CD, RH provided for invaluable discussion, editorial assistance and language polishing. GW provided research grants and approved the manuscript.

Corresponding authors

Correspondence to Juhui Qiu or Guixue Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

The animal experiments were approved by the Laboratory Animal Welfare and Ethics Committee of the Third Military Medical University (project identification code SYXK-PLA-20170005, on 5 March 2019, Chongqing, China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Gu, W., Li, T. et al. SRGN, a new identified shear-stress-responsive gene in endothelial cells. Mol Cell Biochem 474, 15–26 (2020). https://doi.org/10.1007/s11010-020-03830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03830-7

Keywords

Navigation