Skip to main content

Advertisement

Log in

Osmolarity controls the differentiation of adipose-derived stem cells into nucleus pulposus cells via histone demethylase KDM4B

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adipose-derived stem cells (ADSCs) are an ideal source of cells for intervertebral disc (IVD) regeneration, but the effect of an increased osmotic microenvironment on ADSC differentiation remains unclear. Here, we aimed to elucidate whether hyperosmolarity facilitates ADSC nucleus pulposus (NP)-like differentiation and whether histone demethylase KDM4B is involved in this process. ADSCs were cultured under standard and increased osmolarity conditions for 1–3 weeks, followed by analysis for proliferation and viability. Differentiation was then quantified by gene and protein analysis. Finally, KDM4B knockdown ADSCs were generated using lentiviral vectors. The results showed that increasing the osmolarity of the differentiation medium to 400 mOsm significantly increased NP-like gene expression and the synthesis of extracellular matrix (ECM) components during ADSC differentiation; however, further increasing the osmolarity to 500 mOsm suppressed the NP-like differentiation of ADSCs. KDM4B, as well as the IVD formation regulators forkhead box (Fox)a1/2 and sonic hedgehog (Shh), were found to be significantly upregulated at 400 mOsm. KDM4B knockdown reduced Foxa1/2, Shh, and NP-associated markers’ expression, as well as the synthesis of ECM components. The reduction in NP-like differentiation caused by KDM4B knockdown was partially rescued by Purmorphamine, a specific agonist of Shh. Moreover, we found that KDM4B can directly bind to the promoter region of Foxa1/2 and decrease the content of H3K9me3/2. In conclusion, our results indicate that a potential optimal osmolarity window might exist for successful ADSC differentiation. KDM4B plays an essential role in regulating the osmolarity-induced NP-like differentiation of ADSCs by interacting with Foxa1/2-Shh signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADSC:

Adipose-derived stem cell

CCK-8:

Cell counting kit-8

DMEM:

Dulbecco’s modified Eagle’s medium

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

Fox:

Forkhead box

GPC3:

Glypican 3

IVD:

Intervertebral disc

KRT19:

Keratin 19

LBP:

Lower back pain

MSC:

Mesenchymal stem cell

NP:

Nucleus pulposus

PI:

Propidium iodide

RT-qPCR:

Reverse transcriptase quantitative polymerase chain reaction

SD:

Standard deviation

Shh:

Sonic hedgehog

TGF-β:

Transforming growth factor-β

References

  1. Global Burden of Disease Study C (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global burden of disease study 2013. Lancet 386(9995):743–800. https://doi.org/10.1016/S0140-6736(15)60692-4

    Article  Google Scholar 

  2. Osti OL, Cullum DE (1994) Occupational low back pain and intervertebral disc degeneration: epidemiology, imaging, and pathology. Clin J Pain 10(4):331–334. https://doi.org/10.1097/00002508-199412000-00015

    Article  CAS  PubMed  Google Scholar 

  3. Lai A, Moon A, Purmessur D, Skovrlj B, Winkelstein BA, Cho SK, Hecht AC, Iatridis JC (2015) Assessment of functional and behavioral changes sensitive to painful disc degeneration. J Orthop Res 33(5):755–764. https://doi.org/10.1002/jor.22833

    Article  PubMed  PubMed Central  Google Scholar 

  4. Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, Mobasheri R, Poletti FL, Hoyland JA, Mobasheri A (2016) Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99:69–80. https://doi.org/10.1016/j.ymeth.2015.09.015

    Article  CAS  PubMed  Google Scholar 

  5. Ding F, Shao ZW, Xiong LM (2013) Cell death in intervertebral disc degeneration. Apoptosis 18(7):777–785. https://doi.org/10.1007/s10495-013-0839-1

    Article  PubMed  Google Scholar 

  6. Tendulkar G, Chen T, Ehnert S, Kaps HP, Nussler AK (2019) Intervertebral disc nucleus repair: hype or hope? Int J Mol Sci. https://doi.org/10.3390/ijms20153622

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wuertz K, Godburn K, Neidlinger-Wilke C, Urban J, Iatridis JC (2008) Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine (Phila Pa 1976) 33(17):1843–1849. https://doi.org/10.1097/BRS.0b013e31817b8f53

    Article  Google Scholar 

  8. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 16(2):R67. https://doi.org/10.1186/ar4505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wankhade UD, Shen M, Kolhe R, Fulzele S (2016) Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int 2016:3206807. https://doi.org/10.1155/2016/3206807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Vries SA, Potier E, van Doeselaar M, Meij BP, Tryfonidou MA, Ito K (2015) Conditioned medium derived from notochordal cell-rich nucleus pulposus tissue stimulates matrix production by canine nucleus pulposus cells and bone marrow-derived stromal cells. Tissue Eng Part A 21(5–6):1077–1084. https://doi.org/10.1089/ten.TEA.2014.0309

    Article  PubMed  Google Scholar 

  11. Harasymiak-Krzyzanowska I, Niedojadlo A, Karwat J, Kotula L, Gil-Kulik P, Sawiuk M, Kocki J (2013) Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell Mol Biol Lett 18(4):479–493. https://doi.org/10.2478/s11658-013-0101-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang CZ, Li H, Tao YQ, Peng LH, Gao JQ, Wu JJ, Li FC, Hua JM, Chen QX (2013) Dual release of dexamethasone and TGF-beta3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model. Acta Biomater 9(12):9423–9433. https://doi.org/10.1016/j.actbio.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  13. Sivan SS, Roberts S, Urban JP, Menage J, Bramhill J, Campbell D, Franklin VJ, Lydon F, Merkher Y, Maroudas A, Tighe BJ (2014) Injectable hydrogels with high fixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues. Acta Biomater 10(3):1124–1133. https://doi.org/10.1016/j.actbio.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  14. Johnson ZI, Shapiro IM, Risbud MV (2014) Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of TonEBP. Matrix Biol 40:10–16. https://doi.org/10.1016/j.matbio.2014.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Dijk B, Potier E, Ito K (2011) Culturing bovine nucleus pulposus explants by balancing medium osmolarity. Tissue Eng Part C Methods 17(11):1089–1096. https://doi.org/10.1089/ten.TEC.2011.0215

    Article  PubMed  Google Scholar 

  16. Perez-Martinez ME, Benet M, Alepuz P, Tordera V (2020) Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes. Epigenetics 15:251–271. https://doi.org/10.1080/15592294.2019.1664229

    Article  PubMed  Google Scholar 

  17. Atlasi Y, Stunnenberg HG (2017) The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 18(11):643–658. https://doi.org/10.1038/nrg.2017.57

    Article  CAS  PubMed  Google Scholar 

  18. Im GI, Shin KJ (2015) Epigenetic approaches to regeneration of bone and cartilage from stem cells. Expert Opin Biol Ther 15(2):181–193. https://doi.org/10.1517/14712598.2015.960838

    Article  CAS  PubMed  Google Scholar 

  19. Shen H, Xu W, Lan F (2017) Histone lysine demethylases in mammalian embryonic development. Exp Mol Med 49:e325. https://doi.org/10.1038/emm.2017.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dimitrova E, Turberfield AH, Klose RJ (2015) Histone demethylases in chromatin biology and beyond. EMBO Rep 16(12):1620–1639. https://doi.org/10.15252/embr.201541113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swahari V, West AE (2019) Histone demethylases in neuronal differentiation, plasticity, and disease. Curr Opin Neurobiol 59:9–15. https://doi.org/10.1016/j.conb.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  22. Lee HL, Yu B, Deng P, Wang CY, Hong C (2016) Transforming growth factor-beta-induced KDM4B promotes chondrogenic differentiation of human mesenchymal stem cells. Stem Cells 34(3):711–719. https://doi.org/10.1002/stem.2231

    Article  CAS  PubMed  Google Scholar 

  23. Labbe RM, Holowatyj A, Yang ZQ (2013) Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res 6(1):1–15

    PubMed  PubMed Central  Google Scholar 

  24. Wilson C, Krieg AJ (2019) KDM4B: a nail for every hammer? Genes (Basel). https://doi.org/10.3390/genes10020134

    Article  PubMed Central  Google Scholar 

  25. Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2002) A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc 124:14520–14521. https://doi.org/10.1021/ja0283908

    Article  CAS  PubMed  Google Scholar 

  26. Rezia Rad M, Khojaste M, Hasan Shahriari M, Asgary S, Khojasteh A (2016) Purmorphamine increased adhesion, proliferation and expression of osteoblast phenotype markers of human dental pulp stem cells cultured on beta-tricalcium phosphate. Biomed Pharmacother 82:432–438. https://doi.org/10.1016/j.biopha.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  27. Chen M, Wang X, Hu B, Zhou J, Wang X, Wei W, Zhou H (2018) Protective effects of echinacoside against anoxia/reperfusion injury in H9c2 cells via up-regulating p-AKT and SLC8A3. Biomed Pharmacother 104:52–59. https://doi.org/10.1016/j.biopha.2018.04.188

    Article  CAS  PubMed  Google Scholar 

  28. Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park NH, Wang CY (2018) Histone demethylases KDM4B and KDM6B promote osteogenic differentiation of human MSCs. Cell Stem Cell 23(6):898–899. https://doi.org/10.1016/j.stem.2018.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caron MM, van der Windt AE, Emans PJ, van Rhijn LW, Jahr H, Welting TJ (2013) Osmolarity determines the in vitro chondrogenic differentiation capacity of progenitor cells via nuclear factor of activated T-cells 5. Bone 53(1):94–102. https://doi.org/10.1016/j.bone.2012.11.032

    Article  CAS  PubMed  Google Scholar 

  30. Tian Z, Yao L, Shen Y, Guo X, Duan X (2019) Histone H3K9 demethylase JMJD1A is a co-activator of erythropoietin expression under hypoxia. Int J Biochem Cell Biol 109:33–39. https://doi.org/10.1016/j.biocel.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  31. Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J, Wang Y, Le R, Wang H, Duan T, Zhang Y, Gao S (2018) Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20:620–631. https://doi.org/10.1038/s41556-018-0093-4

    Article  CAS  PubMed  Google Scholar 

  32. Mavrogonatou E, Kletsas D (2012) Differential response of nucleus pulposus intervertebral disc cells to high salt, sorbitol, and urea. J Cell Physiol 227(3):1179–1187. https://doi.org/10.1002/jcp.22840

    Article  CAS  PubMed  Google Scholar 

  33. Sadowska A, Kameda T, Krupkova O, Wuertz-Kozak K (2018) Osmosensing, osmosignalling and inflammation: how intervertebral disc cells respond to altered osmolarity. Eur Cell Mater 36:231–250. https://doi.org/10.22203/eCM.v036a17

    Article  CAS  PubMed  Google Scholar 

  34. Fearing BV, Hernandez PA, Setton LA, Chahine NO (2018) Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine. https://doi.org/10.1002/jsp2.1026

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S (2010) Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthritis Cartilage 18(3):416–423. https://doi.org/10.1016/j.joca.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  36. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62(12):3695–3705. https://doi.org/10.1002/art.27710

    Article  PubMed  Google Scholar 

  37. Liu Y, Zhang D (2015) HP1a/KDM4A is involved in the autoregulatory loop of the oncogene gene c-Jun. Epigenetics 10:453–459. https://doi.org/10.1080/15592294.2015.1048059

    Article  PubMed  PubMed Central  Google Scholar 

  38. Su LC, Deng B, Liu S, Li LM, Hu B, Zhong YT, Li L (2015) Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Front Plant Sci 6:512. https://doi.org/10.3389/fpls.2015.00512

    Article  PubMed  PubMed Central  Google Scholar 

  39. Manna S, Kim JK, Bauge C, Cam M, Zhao Y, Shetty J, Vacchio MS, Castro E, Tran B, Tessarollo L, Bosselut R (2015) Histone H3 Lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat Commun 6:8152. https://doi.org/10.1038/ncomms9152

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bustos F, Sepulveda H, Prieto CP, Carrasco M, Diaz L, Palma J, Lattus J, Montecino M, Palma V (2017) Runt-related transcription factor 2 induction during differentiation of wharton's jelly mesenchymal stem cells to osteoblasts is regulated by jumonji AT-rich interactive domain 1B histone demethylase. Stem Cells 35(12):2430–2441. https://doi.org/10.1002/stem.2704

    Article  CAS  PubMed  Google Scholar 

  41. Besnard V, Wert SE, Hull WM, Whitsett JA (2004) Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr Patterns 5(2):193–208. https://doi.org/10.1016/j.modgep.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  42. Maier JA, Lo Y, Harfe BD (2013) Foxa1 and Foxa2 are required for formation of the intervertebral discs. PLoS ONE 8(1):e55528. https://doi.org/10.1371/journal.pone.0055528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dal-Pra S, Thisse C, Thisse B (2011) FoxA transcription factors are essential for the development of dorsal axial structures. Dev Biol 350(2):484–495. https://doi.org/10.1016/j.ydbio.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  44. Choi KS, Lee C, Harfe BD (2012) Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs. Mech Dev 129(9–12):255–262. https://doi.org/10.1016/j.mod.2012.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237(12):3953–3958. https://doi.org/10.1002/dvdy.21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tessier S, Madhu V, Johnson ZI, Shapiro IM, Risbud MV (2019) NFAT5/TonEBP controls early acquisition of notochord phenotypic markers, collagen composition, and sonic hedgehog signaling during mouse intervertebral disc embryogenesis. Dev Biol 455(2):369–381. https://doi.org/10.1016/j.ydbio.2019.07.004

    Article  CAS  PubMed  Google Scholar 

  47. Dahia CL, Mahoney EJ, Durrani AA, Wylie C (2009) Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging. Spine (Phila Pa 1976) 34(5):456–462. https://doi.org/10.1097/BRS.0b013e3181913e98

    Article  Google Scholar 

  48. Mavromatakis YE, Lin W, Metzakopian E, Ferri AL, Yan CH, Sasaki H, Whisett J, Ang SL (2011) Foxa1 and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. Mech Dev 128(1–2):90–103. https://doi.org/10.1016/j.mod.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  49. Zhou X, Ma C, Hu B, Tao Y, Wang J, Huang X, Zhao T, Han B, Li H, Liang C, Chen Q, Li F (2018) FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway. FASEB J. https://doi.org/10.1096/fj.201800373R

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partly supported by grants from the National Nature Science Foundation of China (81902279), the Nature Science Foundation of Zhejiang Province (LQ19H060002 and LQ19H160041) and the Medical and Health Science and Technology Project of Zhejiang Province (2018KY089 and 2020KY143).

Author information

Authors and Affiliations

Authors

Contributions

YJZ, YYW, QXC and FCL conceived and designed the research; YJZ, YYW, XPZ, JKW and MMS performed the research; YJZ, YYW and JW analyzed the data; QXC and FCL contributed with reagents or analytic tools; YJZ and YYW wrote the manuscript; and all authors revised and approved the manuscript.

Corresponding authors

Correspondence to Fangcai Li or Qixin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Zhou, X. et al. Osmolarity controls the differentiation of adipose-derived stem cells into nucleus pulposus cells via histone demethylase KDM4B. Mol Cell Biochem 472, 157–171 (2020). https://doi.org/10.1007/s11010-020-03794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03794-8

Keywords

Navigation