Skip to main content
Log in

The angiotensin-I converting enzyme gene I/D variation contributes to end-stage renal disease risk in Chinese patients with type 2 diabetes receiving hemodialysis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Whether the DD genotype of the angiotensin-I converting enzyme (ACE) I/D variation contributes to end-stage renal disease (ESRD) risk in type 2 diabetes mellitus (T2DM) remains controversial. Differences in study design, case and control definition, sample size and ethnicity may contribute to the discrepancies reported in association studies. We performed a case–control study to evaluate the association of the ACE I/D variation with ESRD risk in Chinese patients with T2DM receiving hemodialysis and analyzed the genotype–phenotype interaction. Unrelated Chinese patients (n = 432) were classified into the non-diabetic nephropathy (DN) control group (n = 222, duration of diabetes >10 years, no signs of renal involvement) and the DN-ESRD group (n = 210; ESRD due to T2DM, receiving hemodialysis). Polymerase chain reaction was used to genotype ACE I/D for all 432 subjects. The frequencies of the ID + DD genotypes were higher in the DN-ESRD group than non-DN control group (65.2 vs. 50.9 %; adjusted OR 1.98 (95 % CI, 1.31–3.00; P = 0.001). In the DN-ESRD group, the DD genotypic subgroup had significantly elevated HbA1c and diastolic blood pressure (DBP) compared to the II subgroup (both P < 0.05). The DD genotype of the ACE I/D variation may be associated with more elevated blood pressure and HbA1c, and therefore may predict the development, progression and severity of DN-ESRD in Chinese patients with T2DM undergoing hemodialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787

    Article  CAS  PubMed  Google Scholar 

  2. Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG, DEMAND investigators (2006) Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 69(11):2057–2063

    Article  PubMed  Google Scholar 

  3. Pambianco G, Costacou T, Ellis D, Becker DJ, Klein R, Orchard TJ (2006) The 30-year natural history of type 1 diabetes complications: the Pittsburgh epidemiology of diabetes complications study experience. Diabetes 55(5):1463–1469

    Article  CAS  PubMed  Google Scholar 

  4. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Herzog C, Ishani A, Johansen K, Kasiske B, Kutner N, Liu J, Peter W, Ding S, Guo H, Kats A, Lamb K, Li S, Li S, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Weinhandl E, Xiong H, Yusuf A, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L (2013) US renal data system 2012 annual data report. Am J Kidney Dis 61(1 Suppl 1):407–476. doi:10.1053/j.ajkd.2012.11.031

    Google Scholar 

  5. Gilg J, Castledine C, Fogarty D, Feest T (2011) UK renal registry 13th annual report (December 2010): chapter 1: UK RRT incidence in 2009: national and centre-specific analyses. Nephron Clin Pract 119(Suppl 2):c1–c25. doi:10.1159/000331741

    Article  PubMed  Google Scholar 

  6. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H (2011) Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 44(Suppl 2):S14–S21

    Google Scholar 

  7. Karter AJ, Ferrara A, Liu JY, Moffet HH, Ackerson LM, Selby JV (2002) Ethnic disparities in diabetic complications in an insured population. JAMA 287(19):2519–2527

    Article  PubMed  Google Scholar 

  8. Liu ZH (2013) Nephrology in china. Nat Rev Nephrol 9(9):523–528. doi:10.1038/nrneph.2013.146

    Article  PubMed  Google Scholar 

  9. Placha G, Canani LH, Warram JH, Krolewski AS (2005) Evidence for different susceptibility genes for proteinuria and ESRD in type 2 diabetes. Adv Chronic Kidney Dis 12(2):155–169

    Article  PubMed  Google Scholar 

  10. Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ (2011) Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54(3):544–553

    Article  CAS  PubMed  Google Scholar 

  11. Ohshige T, Tanaka Y, Araki S et al (2010) A single nucleotide polymorphism in KCNQ1 is associated with susceptibility to diabetic nephropathy in Japanese subjects with type 2 diabetes. Diabetes Care 33(4):842–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Viswanathan V, Zhu Y, Bala K, Dunn S, Snehalatha C, Ramachandran A, Jayaraman M, Sharma K (2001) Association between ACE gene polymorphism and diabetic nephropathy in South Indian patients. JOP 2(2):83–87

    CAS  PubMed  Google Scholar 

  13. Tarnow L (1996) Genetic pattern in diabetic nephropathy. Nephrol Dial Transplant 11(3):410–412

    Article  CAS  PubMed  Google Scholar 

  14. Erdös EG, Skidgel RA (1987) The angiotensin I-converting enzyme. Lab Invest 56(4):345–348

    PubMed  Google Scholar 

  15. Rigat B, Hubert C, Corvol P, Soubrier F (1992) PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res 20(6):1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F, Soubrier F (1992) Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 51(1):197–205

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiwanitkit V (2006) Angiotensin-converting enzyme gene polymorphism is correlated to the progression of disease in patients with IgA nephropathy: a meta-analysis. Ren Fail 28(8):697–699

    Article  PubMed  Google Scholar 

  18. Yoshida H, Kuriyama S, Atsumi Y, Tomonari H, Mitarai T, Hamaguchi A, Kubo H, Kawaguchi Y, Kon V, Matsuoka K, Ichikawa I, Sakai O (1996) Angiotensin I converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus. Kidney Int 50(2):657–664

    Article  CAS  PubMed  Google Scholar 

  19. Ha SK, Park HC, Park HS, Kang BS, Lee TH, Hwang HJ, Kim SJ, Kim DH, Kang SW, Choi KH, Lee HY, Han DS (2003) ACE gene polymorphism and progression of diabetic nephropathy in Korean type 2 diabetic patients: effect of ACE gene DD on the progression of diabetic nephropathy. Am J Kidney Dis 41(5):943–949

    Article  CAS  PubMed  Google Scholar 

  20. Ringel J, Beige J, Kunz R, Distler A, Sharma AM (1997) Genetic variants of the renin-angiotensin system, diabetic nephropathy and hypertension. Diabetologia 40(2):193–199

    Article  CAS  PubMed  Google Scholar 

  21. Buraczynska M, Ksiazek P, Drop A, Zaluska W, Spasiewicz D, Ksiazek A (2006) Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease. Nephrol Dial Transplant 21(4):979–983

    Article  CAS  PubMed  Google Scholar 

  22. Zsom M, Fülöp T, Zsom L, Baráth A, Maróti Z, Endreffy E (2011) Genetic polymorphisms and the risk of progressive renal failure in elderly Hungarian patients. Hemodial Int 15(4):501–508. doi:10.1111/j.1542-4758.2011.00593.x

    Article  PubMed  Google Scholar 

  23. Schmidt S, Strojek K, Grzeszczak W, Bergis K, Ritz E (1997) Excess of DD homozygotes in haemodialysed patients with type II diabetes. The diabetic nephropathy study group. Nephrol Dial Transplant 12(3):427–429

    Article  CAS  PubMed  Google Scholar 

  24. Liu Limei, Zheng Taishan, Wang Feng, Wang Niansong, Song Yanyan, Li Ming, Li Lifang, Jiang Jiamei, Zhao Weijing (2010) Pro12Ala polymorphism in the PPARG gene contributes to the development of diabetic nephropathy in Chinese type 2 diabetes. Diabetes Care 33(1):144–149

    Article  CAS  PubMed  Google Scholar 

  25. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28(1):164–176

    Article  PubMed  Google Scholar 

  26. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

    Article  PubMed Central  Google Scholar 

  27. Harris RD, Steffes MW, Bilous RW, Sutherland DE, Mauer SM (1991) Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int 40(1):107–114

    Article  CAS  PubMed  Google Scholar 

  28. Mishra R, Emancipator SN, Kern T, Simonson MS (2005) High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int 67(1):82–93. doi:10.1111/j.1523-1755.2005.00058.x

    Article  CAS  PubMed  Google Scholar 

  29. Oh SW, Kim YC, Koo HS, Jin DC, Na KY, Chae DW, Kim S, Chin HJ (2011) Glycated haemoglobin and the incidence of end-stage renal disease in diabetics. Nephrol Dial Transplant 26(7):2238–2244. doi:10.1093/ndt/gfq707

    Article  CAS  PubMed  Google Scholar 

  30. Riveline JP, Teynie J, Belmouaz S, Franc S, Dardari D, Bauwens M, Caudwell V, Ragot S, Bridoux F, Charpentier G, Marechaud R, Hadjadj S (2009) Glycaemic control in type 2 diabetic patients on chronic haemodialysis: use of a continuous glucose monitoring system. Nephrol Dial Transplant 24(9):2866–2871. doi:10.1093/ndt/gfp181

    Article  CAS  PubMed  Google Scholar 

  31. Abe M, Kalantar-Zadeh K (2015) Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat Rev Nephrol 11(5):302–313. doi:10.1038/nrneph.2015.38

    Article  CAS  PubMed  Google Scholar 

  32. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cambien F (1994) The angiotensin-converting enzyme (ACE) genetic polymorphism: its relationship with plasma ACE level and myocardial infarction. Clin Genet 46(1 Spec No):94–101

    CAS  PubMed  Google Scholar 

  34. Chhabra KH, Xia H, Pedersen KB, Speth RC, Lazartigues E (2013) Pancreatic angiotensin-converting enzyme 2 improves glycemia in angiotensin II-infused mice. Am J Physiol Endocrinol Metab 304(8):E874–E884. doi:10.1152/ajpendo.00490.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans WE, McLeod HL (2003) Pharmacogenomics–drug disposition, drug targets, and side effects. N Engl J Med 348(6):538–549

    Article  CAS  PubMed  Google Scholar 

  36. Parving HH, Jacobsen P, Tarnow L, Rossing P, Lecerf L, Poirier O, Cambien F (1996) Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme: observational follow up study. BMJ 313(7057):591–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parving HH, de Zeeuw D, Cooper ME, Remuzzi G, Liu N, Lunceford J, Shahinfar S, Wong PH, Lyle PA, Rossing P, Brenner BM (2008) ACE gene polymorphism and losartan treatment in type 2 diabetic patients with nephropathy. J Am Soc Nephrol 19(4):771–779. doi:10.1681/ASN.2007050582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mogensen CE (1998) Combined high blood pressure and glucose in type 2 diabetes: double jeopardy. British trial shows clear effects of treatment, especially blood pressure reduction. BMJ 317(7160):693–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gargiulo R, Suhail F, Lerma EV (2015) Hypertension and chronic kidney disease. Dis Mon 61(9):387–395

    Article  PubMed  Google Scholar 

  40. Mennuni S, Rubattu S, Pierelli G, Tocci G, Fofi C, Volpe M (2014) Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens 28(2):74–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Project of National Natural Science Foundation of China (81471012, 81270876, 30771022, and 30971384), the University Innovation Research and Training Program of Shanghai Jiaotong University School of Medicine (2015301), the Shanghai Leading Talent (SLJ15055), the Program of Education Research from Shanghai Jiaotong University of Medicine (YB150612), and Program of Scientific Research from Shanghai Health and Family Planning Commission (20144Y0206). Y. Liu was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant SC1DK104821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Liu.

Additional information

Ming Lu, Jianzhong Zhang and Ming Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Zhang, J., Li, M. et al. The angiotensin-I converting enzyme gene I/D variation contributes to end-stage renal disease risk in Chinese patients with type 2 diabetes receiving hemodialysis. Mol Cell Biochem 422, 181–188 (2016). https://doi.org/10.1007/s11010-016-2819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2819-6

Keywords

Navigation