Skip to main content
Log in

Induction of hypoxia-inducible factor-1α by BDNF protects retinoblastoma cells against chemotherapy-induced apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alternations of environment signals such as neurotrophins may be the basis for malignant transformation of retinoblastoma (Rb), the most common primary intraocular malignancy in children. The aim of this study is to investigate the ability of brain-derived neurotrophic factor (BDNF) to decrease the chemosensitivity of Rb cells to the common chemotherapeutic agents and to explore the role of hypoxia-inducible factor-1α (HIF-1α) in such cellular process. The results showed that BDNF could induce higher expression of HIF-1α via activation of TrkB in human Y-79 retinoblastoma cells, which consequently contributed to its effect against chemotherapeutic agent-induced cytotoxicity and cell apoptosis. However, this protective effect could be potently reversed by knockdown of HIF-1α. Furthermore, BDNF strikingly prevented chemotherapeutic agent-induced alternations of apoptosis-related molecules, which could also be attenuated by silencing HIF-1α. Therefore, our findings demonstrated that BDNF could contribute to chemoresistance of Rb via modulation of HIF-1α expression, indicating that targeting at the BDNF-TrkB/HIF-1α signaling pathway might be a promising strategy for the treatment of retinoblastoma in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCarthy N (2012) Retinoblastoma: epigenetic outcome. Nat Rev Cancer 12:80

    Article  Google Scholar 

  2. Villegas VM, Hess DJ, Wildner A, Gold AS, Murray TG (2013) Retinoblastoma. Curr Opin Ophthalmol 24:581–588

    Article  PubMed  Google Scholar 

  3. Friedman DN, Sklar CA, Oeffinger KC, Kernan NA, Khakoo Y, Marr BP, Wolden SL, Abramson DH, Dunkel IJ (2013) Long-term medical outcomes in survivors of extra-ocular retinoblastoma: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Pediatr Blood Cancer 60:694–699

    Article  PubMed  Google Scholar 

  4. Stannard C, Sauerwein W, Maree G, Lecuona K (2013) Radiotherapy for ocular tumours. Eye (Lond) 27:119–127

    Article  CAS  Google Scholar 

  5. Shields CL, Bianciotto CG, Jabbour P, Griffin GC, Ramasubramanian A, Rosenwasser R, Shields JA (2011) Intra-arterial chemotherapy for retinoblastoma: report no. 2, treatment complications. Arch Ophthalmol 129:1407–1415

    Article  CAS  PubMed  Google Scholar 

  6. Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stephan H, Zakrzewski JL, Bölöni R, Grasemann C, Lohmann DR, Eggert A (2008) Neurotrophin receptor expression in human primary retinoblastomas and retinoblastoma cell lines. Pediatr Blood Cancer 50:218–222

    Article  PubMed  Google Scholar 

  8. Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM, Yancopoulos GD (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5:501–509

    Article  CAS  PubMed  Google Scholar 

  9. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258

    CAS  PubMed  Google Scholar 

  10. Washiyama K, Muragaki Y, Rorke LB, Lee V, Feinstein SC, Radeke MJ, Blumberg D, Kaplan D, Trojanowski J (1996) Neurotrophin and neurotrophin receptor proteins in medulloblastomas and other primitive neuroectodermal tumors of the pediatric central nervous system. Am J Pathol 148:929–940

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiappa SA, Chin LS, Zurawel RH, Raffel C (1999) Neurotrophins and Trk receptors in primitive neuroectodermal tumor cell lines. Neurosurgery 45:1148–1154

    Article  CAS  PubMed  Google Scholar 

  12. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62:6756–6763

    CAS  PubMed  Google Scholar 

  13. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Exp Mol Med 36:1–12

    Article  PubMed  Google Scholar 

  16. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura K, Martin KC, Jackson JK, Beppu K, Woo C-W, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1α in neuroblastoma cells. Cancer Res 66:4249–4255

    Article  CAS  PubMed  Google Scholar 

  18. Hammond JB, Kruger NJ (1988) The bradford method for protein quantitation. Methods Mol Biol 3:25–32

    CAS  PubMed  Google Scholar 

  19. Zhu X, Wang K, Zhang K, Zhu L, Zhou F (2014) Ziyuglycoside II induces cell cycle arrest and apoptosis through activation of ROS/JNK pathway in human breast cancer cells. Toxicol Lett 227:65–73

    Article  CAS  PubMed  Google Scholar 

  20. Friedman WJ, Greene LA (1999) Neurotrophin signaling via Trks and p75. Exp Cell Res 253:131–142

    Article  CAS  PubMed  Google Scholar 

  21. Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233

    Article  CAS  PubMed  Google Scholar 

  22. Johnson JE, Barde Y-A, Schwab M, Thoenen H (1986) Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci 6:3031–3038

    CAS  PubMed  Google Scholar 

  23. Colafrancesco V, Parisi V, Sposato V, Rossi S, Russo MA, Coassin M, Lambiase A, Aloe L (2011) Ocular application of nerve growth factor protects degenerating retinal ganglion cells in a rat model of glaucoma. J Glaucoma 20:100–108

    Article  PubMed  Google Scholar 

  24. Frade JM, Bovolenta P, Rodriguez-Tebar A (1999) Neurotrophins and other growth factors in the generation of retinal neurons. Microsc Res Tech 45:243–251

    Article  CAS  PubMed  Google Scholar 

  25. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14:191–201

    Article  CAS  PubMed  Google Scholar 

  26. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel J, Landers K, Mortimer RH, Richard K (2010) Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta 31:951–957

    Article  CAS  PubMed  Google Scholar 

  28. Halterman MW, Federoff HJ (1999) HIF-1α and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol 159:65–72

    Article  CAS  PubMed  Google Scholar 

  29. Greijer A, Van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57:1009–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Q, Zhang ZF, Rao JY, Sato JD, Brown J, Messadi DV, Le AD (2004) Treatment with siRNA and antisense oligonucleotides targeted to HIF-1alpha induced apoptosis in human tongue squamous cell carcinomas. Int J Cancer 111:849–857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds of Tongji University (2012KJ042), Shanghai Municipality Health and Family Planning Commission (201540304), and Hongkou District of Shanghai Municipality Health and Family Planning Commission (1402-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Jing, M., Ge, R. et al. Induction of hypoxia-inducible factor-1α by BDNF protects retinoblastoma cells against chemotherapy-induced apoptosis. Mol Cell Biochem 414, 77–84 (2016). https://doi.org/10.1007/s11010-016-2660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2660-y

Keywords

Navigation