Skip to main content
Log in

Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatic stellate cell (HSC) activation is a significant event in the development of liver fibrosis. Promoting the activated HSCs apoptosis contributes to the reversal of liver fibrosis. Autophagy is considered to be critical for many cellular and pathological processes including liver fibrosis. Transient receptor potential vanilloid 4 (TRPV4), another member of the transient receptor potential (TRP) channel, is proved to be a vital modulator in regulating HSC proliferation during liver fibrosis. However, the precise mechanism of TRPV4 on HSC apoptosis is still unclear. Here, we explored the role of TRPV4 in regulating HSC-T6 cell apoptosis. Our study detected that the expressions of TRPV4 mRNA and protein were dramatically increased in HSC-T6 in response to TGF-β1 stimulation by qRT-PCR and Western blot. Moreover, the HSC-T6 transfected with si-TRPV4 increased apoptosis and inhibited autophagy. In addition, the HSC-T6 treated with 4α-phorbol 12,13-didecanoate results in suppression of apoptosis and increase of autophagy. Furthermore, we indicated that TRPV4 induces autophagy by regulating AKT signaling pathway. In addition, we found that blockade of autophagy by chemical antagonists chloroquine (CQ) leads to increased apoptosis. Furthermore, blocking autophagy by CQ did not lead to a distinct change with or without TRPV4 over-expression. These results indicated that TRPV4 could inhibit HSCs apoptosis partially by regulating autophagy-dependent AKT signaling pathway activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

4α-PDD:

4α-Phorbol 12,13-didecanoate

AO:

Acridine orange

CQ:

Chloroquine

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

HSCs:

Hepatic stellate cells

MFBLC:

Myofibroblast-like cells

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

PBS:

Phosphate-buffered saline

PVDF:

Polyvinylidene fluoride film

qRT-PCR:

Quantitative real-time PCR

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

siRNA:

Small interfering RNA

TGF-β1:

Transforming growth factor-beta 1

TRP:

Transient receptor potential

TRPM7:

Transient receptor potential melastatin 7

TPRV4:

Transient receptor potential vanilloid receptor 4

References

  1. Lee UE, Friedman SL (2011) Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 25:195–206. doi:10.1016/j.bpg.2011.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456. doi:10.1146/annurev-pathol-011110-130246

    Article  CAS  PubMed  Google Scholar 

  3. Inagaki Y, Okazaki I (2007) Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut 56:284–292. doi:10.1136/gut.2005.088690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S (2006) TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 44:57–66. doi:10.1055/s-2005-858989

    Article  CAS  PubMed  Google Scholar 

  5. Ramachandran P, Iredale JP (2012) Liver fibrosis: a bidirectional model of fibrogenesis and resolution. QJM 105:813–817. doi:10.1093/qjmed/hcs069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ping J, Gao AM, Qin HQ, Wei XN, Bai J, Liu L, Li XH, Li RW, Ao Y, Wang H (2011) Indole-3-carbinol enhances the resolution of rat liver fibrosis and stimulates hepatic stellate cell apoptosis by blocking the inhibitor of kappaB kinase alpha/inhibitor of kappaB-alpha/nuclear factor-kappaB pathway. J Pharmacol Exp Ther 339:694–703. doi:10.1124/jpet.111.179820

    Article  CAS  PubMed  Google Scholar 

  7. Fallowfield JA (2011) Therapeutic targets in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 300:G709–G715. doi:10.1152/ajpgi.00451.2010

    Article  CAS  PubMed  Google Scholar 

  8. Lindqvist LM, Vaux DL (2014) BCL2 and related prosurvival proteins require BAK1 and BAX to affect autophagy. Autophagy 10:1474–1475. doi:10.4161/auto.29639

    Article  PubMed  Google Scholar 

  9. Zhang L, Wang H, Xu J, Zhu J, Ding K (2014) Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROS-mediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways. Toxicol Lett 228:248–259. doi:10.1016/j.toxlet.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  10. Cook KL, Clarke PA, Parmar J, Hu R, Schwartz-Roberts JL, Abu-Asab M, Warri A, Baumann WT, Clarke R (2014) Knockdown of estrogen receptor-alpha induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. FASEB J. doi:10.1096/fj.13-247353

    PubMed  Google Scholar 

  11. Song Y, Zhao Y, Wang F, Tao L, Xiao J, Yang C (2014) Autophagy in hepatic fibrosis. Biomed Res Int 2014:436242. doi:10.1155/2014/436242

    PubMed Central  PubMed  Google Scholar 

  12. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, Czaja MJ, Friedman SL (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142:938–946. doi:10.1053/j.gastro.2011.12.044

    Article  PubMed Central  PubMed  Google Scholar 

  13. Seo HY, Jang BK, Jung YA, Lee EJ, Kim HS, Jeon JH, Kim JG, Lee IK, Kim MK, Park KG (2014) Phospholipase D1 decreases type I collagen levels in hepatic stellate cells via induction of autophagy. Biochem Biophys Res Commun 449:38–43. doi:10.1016/j.bbrc.2014.04.149

    Article  CAS  PubMed  Google Scholar 

  14. Simard JM, Woo SK, Gerzanich V (2012) Transient receptor potential melastatin 4 and cell death. Pflug Arch 464:573–582. doi:10.1007/s00424-012-1166-z

    Article  CAS  Google Scholar 

  15. Song Y, Zhan L, Yu M, Huang C, Meng X, Ma T, Zhang L, Li J (2014) TRPV4 channel inhibits TGF-beta1-induced proliferation of hepatic stellate cells. PLoS ONE 9:e101179. doi:10.1371/journal.pone.0101179

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS (2012) PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem 359:347–358. doi:10.1007/s11010-011-1028-6

    Article  CAS  PubMed  Google Scholar 

  17. Friedman SL (2003) Liver fibrosis—from bench to bedside. J Hepatol 38(Suppl 1):S38–S53

    Article  PubMed  Google Scholar 

  18. Geerts A (2004) On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? J Hepatol 40:331–334

    Article  PubMed  Google Scholar 

  19. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669. doi:10.1053/j.gastro.2008.03.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lang Q, Liu Q, Xu N, Qian KL, Qi JH, Sun YC, Xiao L, Shi XF (2011) The antifibrotic effects of TGF-beta1 siRNA on hepatic fibrosis in rats. Biochem Biophys Res Commun 409:448–453. doi:10.1016/j.bbrc.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  21. Beljaars L, Meijer DK, Poelstra K (2002) Targeting hepatic stellate cells for cell-specific treatment of liver fibrosis. Front Biosci 7:e214–e222

    Article  CAS  PubMed  Google Scholar 

  22. Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, Takimoto R, Takada K, Miyanishi K, Matsunaga T, Takayama T, Niitsu Y (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26:431–442. doi:10.1038/nbt1396

    Article  CAS  PubMed  Google Scholar 

  23. Kisseleva T, Brenner DA (2007) Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 22(Suppl 1):S73–S78. doi:10.1111/j.1440-1746.2006.04658.x

    Article  CAS  PubMed  Google Scholar 

  24. Gasull X, Bataller R, Gines P, Sancho-Bru P, Nicolas JM, Gorbig MN, Ferrer E, Badia E, Gual A, Arroyo V, Rodes J (2001) Human myofibroblastic hepatic stellate cells express Ca(2+)-activated K(+) channels that modulate the effects of endothelin-1 and nitric oxide. J Hepatol 35:739–748

    Article  CAS  PubMed  Google Scholar 

  25. Leung HT, Geng C, Pak WL (2000) Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP) and TRP-like channels in Drosophila. J Neurosci 20:6797–6803

    CAS  PubMed  Google Scholar 

  26. O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflug Arch 451:193–203. doi:10.1007/s00424-005-1424-4

    Article  Google Scholar 

  27. Vergnolle N (2014) TRPV4: new therapeutic target for inflammatory bowel diseases. Biochem Pharmacol 89:157–161. doi:10.1016/j.bcp.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  28. Zhang LP, Ma F, Abshire SM, Westlund KN (2013) Prolonged high fat/alcohol exposure increases TRPV4 and its functional responses in pancreatic stellate cells. Am J Physiol Regul Integr Comp Physiol 304:R702–R711. doi:10.1152/ajpregu.00296.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Bostrom P, Mepani RJ, Laznik D, Kamenecka TM, Song X, Liedtke W, Mootha VK, Puigserver P, Griffin PR, Clapham DE, Spiegelman BM (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151:96–110. doi:10.1016/j.cell.2012.08.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhao L, Sullivan MN, Chase M, Gonzales AL, Earley S (2014) Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2 + sparklets stimulate airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol 50:1064–1075. doi:10.1165/rcmb.2013-0416OC

    Article  PubMed  Google Scholar 

  31. Martin E, Dahan D, Cardouat G, Gillibert-Duplantier J, Marthan R, Savineau JP, Ducret T (2012) Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells. Pflug Arch 464:261–272. doi:10.1007/s00424-012-1136-5

    Article  CAS  Google Scholar 

  32. Ryskamp DA, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov NP, Lee SH, Chauhan S, Xing W, Renteria RC, Liedtke W, Krizaj D (2011) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31:7089–7101. doi:10.1523/JNEUROSCI.0359-11.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Adapala RK, Thoppil RJ, Luther DJ, Paruchuri S, Meszaros JG, Chilian WM, Thodeti CK (2013) TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol 54:45–52. doi:10.1016/j.yjmcc.2012.10.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Gracia-Sancho J, Guixe-Muntet S, Hide D, Bosch J (2014) Modulation of autophagy for the treatment of liver diseases. Expert Opin Investig Drugs 23:965–977. doi:10.1517/13543784.2014.912274

    Article  CAS  PubMed  Google Scholar 

  35. Buckley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, Barrett JR, Kirks R, Grace H, Kondrikova G, Johnson MH, Hess DC, Schoenlein PV, Hoda MN, Hill WD (2014) Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp Transl Stroke Med 6:8. doi:10.1186/2040-7378-6-8

    Article  PubMed Central  PubMed  Google Scholar 

  36. McLeod IX, He YW (2012) Editorial: TRPV1—how thymocytes sense stress and respond with autophagy. J Leukoc Biol 92:409–411. doi:10.1189/jlb.0612269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Liu AJ, Wang SH, Hou SY, Lin CJ, Chiu WT, Hsiao SH, Chen TH, Shih CM (2013) Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes. Evid Based Complement Altern Med 2013:354840. doi:10.1155/2013/354840

    Google Scholar 

  38. Farfariello V, Amantini C, Santoni G (2012) Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J Leukoc Biol 92:421–431. doi:10.1189/jlb.0312123

    Article  CAS  PubMed  Google Scholar 

  39. Son MK, Ryu YL, Jung KH, Lee H, Lee HS, Yan HH, Park HJ, Ryu JK, Suh JK, Hong S, Hong SS (2013) HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Sci Rep 3:3470. doi:10.1038/srep03470

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. doi:10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  41. Fang L, Zhan S, Huang C, Cheng X, Lv X, Si H, Li J (2013) TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3 K and ERK pathways. Toxicol Appl Pharmacol 272:713–725. doi:10.1016/j.taap.2013.08.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This Project was supported by the National Science Foundation of China (Nos. 81273526, 81202978).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, L., Yang, Y., Ma, TT. et al. Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy. Mol Cell Biochem 402, 9–22 (2015). https://doi.org/10.1007/s11010-014-2298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2298-6

Keywords

Navigation