Skip to main content
Log in

Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Piperine, a kind of natural alkaloid found in peppers, has been reported to exhibit anti-oxidative and anti-tumor activities, both in vitro and in vivo. Interleukin-6 (IL-6) is an important cytokine that activates the signal transduction, promotes tumor cell metastasis, and induces malignancy, including in gastric cancer. However, the effects of piperine on IL-6 expression in gastric cancer cells have not yet been well defined. In this study, we investigated the effects of piperine on the IL-6 expression, and examined the underlying signaling pathways via RT-PCR, promoter studies and Western blotting in human gastric cancer TMK-1 cells. Our results showed that piperine inhibited interleukin-1β (IL-1β)–induced IL-6 expression in a dose-dependent manner. In addition, piperine also inhibited IL-6 promoter activity. Experiments with mitogen-activated protein kinase (MAPK) inhibitors and dominant negative mutant p38 MAPK indicated that p38 MAPK was essential for IL-6 expression in the TMK-1 cells. Additionally, signal transducer and activator of transcription 3 (STAT3) was also involved in the IL-1β-induced IL-6 expression in gastric cancer cells. Piperine inhibited IL-1β-induced p38 MAPK and STAT3 activation and, in turn, blocked the IL-1β-induced IL-6 expression. Furthermore, gastric cancer cells pretreated with IL-1β showed markedly enhanced invasiveness, which was partially abrogated by treatment with IL-6 siRNA, piperine, and inhibitors of p38 MAPK and STAT3. These results suggest that piperine may exert at least part of its anti-cancer effect by controlling IL-6 expression through the suppression of p38 MAPK and STAT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomark Prev 19:1893–1907

    Article  Google Scholar 

  2. Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, Andreozzi F, Ventriglia J, Savastano B, Mabilia A (2014) Treatment of gastric cancer. World J Gastroenterol 20:1635–1649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ohshima H, Tatemichi M, Sawa T (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417:3–11

    Article  CAS  PubMed  Google Scholar 

  4. Cheng T-Y, Wu M-S, Hua K-T, Kuo M-L, Lin M-T (2014) Cyr61/CTGF/Nov family proteins in gastric carcinogenesis. World J Gastroenterol 20:1694–1700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chung HW, Lim JB (2014) Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J Gastroenterol 20:1667–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007) IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 120:2600–2608

    Article  CAS  PubMed  Google Scholar 

  7. Garbers C, Hermanns HM, Schaper F, Muller-Newen G, Grotzinger J, Rose-John S, Scheller J (2012) Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 23:85–97

    Article  CAS  PubMed  Google Scholar 

  8. Guo Y, Xu F, Lu T, Duan Z, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38:904–910

    Article  CAS  PubMed  Google Scholar 

  9. Yin Y, Si X, Gao Y, Gao L, Wang J (2013) The nuclear factor-κB correlates with increased expression of interleukin-6 and promotes progression of gastric carcinoma. Oncol Rep 29:34–38

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Lee SA, Choi SR, Jang JS, Lee JH, Roh MH, Kim SO, Kim MC, Kim SJ, Jeong JS (2010) Expression of VEGF, EGFR, and IL-6 in gastric adenomas and adenocarcinomas by endoscopic submucosal dissection. Dig Dis Sci 55:1955–1963

    Article  CAS  PubMed  Google Scholar 

  11. Ashizawa T, Okada R, Suzuki Y, Takagi M, Yamazaki T, Sumi T, Aoki T, Ohnuma S (2005) Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a prognostic factor. Gastric Cancer 8:124–131

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Si X, Xu A, Meng X, Gao S, Qi Y, Zhu L, Li T, Li W, Dong L (2013) Activation of STAT3 in human gastric cancer cells via interleukin (IL)-6-type cytokine signaling correlates with clinical implications. PLoS ONE 8:e75788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Necula LG, Chivu-Economescu M, Stanciulescu EL, Bleotu C, Dima SO, Alexiu I, Dumitru A, Constantinescu G, Popescu I, Diaconu CC (2012) IL-6 and IL-11 as markers for tumor aggressiveness and prognosis in gastric adenocarcinoma patients without mutations in Gp130 subunits. J Gastrointest Liver Dis 21:23–29

    Google Scholar 

  14. Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L, Giraud AS (2007) Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol 213:140–151

    Article  CAS  PubMed  Google Scholar 

  15. Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25:387–408

    Article  CAS  PubMed  Google Scholar 

  16. Cahill CM, Rogers JT (2008) Interleukin (IL) 1β induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IκB kinase α pathway targeting activator protein-1. J Biol Chem 283:25900–25912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kandere-Grzybowska K, Kempuraj D, Cao J, Cetrulo CL, Theoharides TC (2006) Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br J Pharmacol 148:208–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kim HG, Han EH, Jang W-S, Choi JH, Khanal T, Park BH, Tran TP, Chung YC, Jeong HG (2012) Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem Toxicol 50:2342–2348

    Article  CAS  PubMed  Google Scholar 

  19. Bae GS, Kim MS, Jeong J, Lee HY, Park KC, Koo BS, Kim BJ, Kim TH, Lee SH, Hwang SY et al (2011) Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases. Biochem Biophys Res Commun 410:382–388

    Article  CAS  PubMed  Google Scholar 

  20. Lai LH, Fu QH, Liu Y, Jiang K, Guo QM, Chen QY, Yan B, Wang QQ, Shen JG (2012) Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol Sin 33:523–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ouyang DY, Zeng LH, Pan H, Xu LH, Wang Y, Liu KP, He XH (2013) Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem Toxicol 60:424–430

    Article  CAS  PubMed  Google Scholar 

  22. Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J (2002) MAPKK-independent activation of p38alpha mediated by TAB 1-dependent autophosphorylation of p38alpha. Science 295:1291–1294

    Article  CAS  PubMed  Google Scholar 

  23. Selvendiran K, Prince Vijeya Singh J, Sakthisekaran D (2006) In vivo effect of piperine on serum and tissue glycoprotein levels in benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice. Pulm Pharmacol Ther 19:107–111

    Article  CAS  PubMed  Google Scholar 

  24. Pradeep CR, Kuttan G (2004) Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int Immunopharmacol 4:1795–1803

    Article  CAS  PubMed  Google Scholar 

  25. Hwang YP, Yun HJ, Kim HG, Han EH, Choi JH, Chung YC, Jeong HG (2011) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCalpha/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol Lett 203:9–19

    Article  CAS  PubMed  Google Scholar 

  26. Makhov P, Golovine K, Canter D, Kutikov A, Simhan J, Corlew MM, Uzzo RG, Kolenko VM (2012) Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity. Prostate 72:661–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pradeep C, Kuttan G (2004) Piperine is a potent inhibitor of nuclear factor-κB (NF-κB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int Immunopharmacol 4:1795–1803

    Article  CAS  PubMed  Google Scholar 

  28. Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122:777–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bae G-S, Kim M-S, Jung W-S, Seo S-W, Yun S-W, Kim SG, Park R-K, Kim E-C, Song H-J, Park S-J (2010) Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur J Pharmacol 642:154–162

    Article  CAS  PubMed  Google Scholar 

  30. Kumar S, Singhal V, Roshan R, Sharma A, Rembhotkar GW, Ghosh B (2007) Piperine inhibits TNF-α induced adhesion of neutrophils to endothelial monolayer through suppression of NF-κB and IκB kinase activation. Eur J Pharmacol 575:177–186

    Article  CAS  PubMed  Google Scholar 

  31. Łukaszewicz-Zajac M, Mroczko B, Szmitkowski M (2010) The role of interleukin-6 and C-reactive protein in gastric cancer. Pol Merkur Lek Organ Pol Towarz Lekarskiego 29:382–386

    Google Scholar 

  32. Huang S-P, Wu M-S, Shun C-T, Wang H-P, Lin M-T, Kuo M-L, Lin J-T (2004) Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J Biomed Sci 11:517–527

    Article  CAS  PubMed  Google Scholar 

  33. Kim D-K, Oh SY, Kwon H-C, Lee S, Kwon KA, Kim BG, Kim S-G, Kim S-H, Jang JS, Kim MC (2009) Clinical significances of preoperative serum interleukin-6 and C-reactive protein level in operable gastric cancer. BMC Cancer 9:155

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J Exp Med 206:1457–1464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kinoshita H, Hirata Y, Nakagawa H, Sakamoto K, Hayakawa Y, Takahashi R, Nakata W, Sakitani K, Serizawa T, Hikiba Y (2013) Interleukin-6 mediates epithelial–stromal interactions and promotes gastric tumorigenesis. PLoS ONE 8:e60914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007) IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 120:2600–2608

    Article  CAS  PubMed  Google Scholar 

  37. Troost E, Hold GL, Smith MG, Chow WH, Rabkin CS, McColl KE, El-Omar EM (2003) The role of interleukin-1beta and other potential genetic markers as indicators of gastric cancer risk. Can J Gastroenterol 17 Suppl B:8B–12B

    PubMed  Google Scholar 

  38. Tsuzaki M, Guyton G, Garrett W, Archambault J, Herzog W, Almekinders L, Bynum D, Yang X, Banes A (2003) IL-1β induces COX2, MMP-1,-3 and-13, ADAMTS-4, IL-1β and IL-6 in human tendon cells. J Orthop Res 21:256–264

    Article  CAS  PubMed  Google Scholar 

  39. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  40. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  CAS  PubMed  Google Scholar 

  41. Obata T, Brown GE, Yaffe MB (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 28:N67–N77

    Article  CAS  PubMed  Google Scholar 

  42. Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG (2013) Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem 141:2591–2599

    Article  CAS  PubMed  Google Scholar 

  43. Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, McDonough PM, Glembotski CC (2000) p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem 275:23814–23824

    Article  CAS  PubMed  Google Scholar 

  44. Patil C, Zhu X, Rossa C Jr, Kim YJ, Kirkwood KL (2004) p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts. Immunol Invest 33:213–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D, Anderson KC (2003) Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 101:703–705

    Article  CAS  PubMed  Google Scholar 

  46. Baldassare JJ, Bi Y, Bellone CJ (1999) The role of p38 mitogen-activated protein kinase in IL-1β transcription. J Immunol 162:5367–5373

    CAS  PubMed  Google Scholar 

  47. Petrella BL, Vincenti MP (2012) Interleukin-1β mediates metalloproteinase-dependent renal cell carcinoma tumor cell invasion through the activation of CCAAT enhancer binding protein β. Cancer Med 1:17–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Liu Y, Fuchs J, Li C, Lin J (2010) IL-6, a risk factor for hepatocellular carcinoma. Cell Cycle 9:3423–3427

    Article  CAS  PubMed  Google Scholar 

  49. Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548–2556

    Article  CAS  PubMed  Google Scholar 

  50. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A (2011) IL-1β and TNFα-initiated IL-6–STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712

    Article  CAS  PubMed  Google Scholar 

  51. Samavati L, Rastogi R, Du W, Hüttemann M, Fite A, Franchi L (2009) STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46:1867–1877

    Article  CAS  PubMed  Google Scholar 

  52. Bode JG, Ehlting C, Häussinger D (2012) The macrophage response towards LPS and its control through the p38(MAPK)–STAT3 axis. Cell Signal 24:1185–1194

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Ren X, Deng C, Yang L, Yan E, Guo T, Li Y, Xu MX (2013) Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol Rep 30:2691–2696

    CAS  PubMed  Google Scholar 

  54. Wung B-S, Hsu M-C, Wu C-C, Hsieh C-W (2005) Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci 78:389–397

    Article  CAS  PubMed  Google Scholar 

  55. Oyagbemi A, Saba A, Azeez O (2010) Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer 47:53–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. DY Yoon (Konkuk University, Korea) for the IL-6-promoter reporter construct. This study was supported by a research grant (0720570) from the National Cancer Center, by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2010-0009910), and by a Medical Research Center (2012-000-9442) grant from the Korean Science and Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Do Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Khoi, P.N., Yoon, H.J. et al. Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol Cell Biochem 398, 147–156 (2015). https://doi.org/10.1007/s11010-014-2214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2214-0

Keywords

Navigation