Skip to main content

Advertisement

Log in

Cellular FLICE-like inhibitory protein protects against cardiac hypertrophy by blocking ASK1/p38 signaling in mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cellular FLICE-like inhibitory protein (Flip) is a negative regulator of nuclear factor κB signaling which has been shown previously to complicate with cardiac hypertrophy. In the present study, we tested the hypothesis that the knockout of Flip would increase cardiac hypertrophy in vivo and in vitro. The effects of Flip knockout on cardiac hypertrophy were investigated using in vitro and in vivo models. Flip was downregulated in transverse aortic constriction (TAC)-induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 1 h. An in vivo, heart hypertrophy model, was performed by TAC in Flip knockdown and sham mice. The extent of hypertrophy of heart was quantitated by echocardiography, and further confirmed by pathological and molecular examination of heart tissue samples. Conditional knockout of Flip in the murine heart increases the hypertrophic response induced by TAC, whereas cardiac function was preserved with reduced Flip levels in response to hypertrophic stimuli. Western blot experiments further showed Flip knockout activated markedly ASK1/P38 signaling cascades in vivo and in vitro. In conclusion, Flip preserves cardiac functions and inhibits cardiac hypertrophy partially by blocking ASK1/P38 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angermann CE, Stork S, Gelbrich G, Faller H, Jahns R, Frantz S, Loeffler M, Ertl G (2012) Mode of action and effects of standardized collaborative disease management on mortality and morbidity in patients with systolic heart failure: the interdisciplinary network for heart failure (INH) study. Circ Heart Fail 5(1):25–35. doi:10.1161/CIRCHEARTFAILURE.111.962969

    Article  PubMed  Google Scholar 

  2. Castagno D, Skali H, Takeuchi M, Swedberg K, Yusuf S, Granger CB, Michelson EL, Pfeffer MA, McMurray JJ, Solomon SD (2012) Association of heart rate and outcomes in a broad spectrum of patients with chronic heart failure: results from the CHARM (candesartan in heart failure: assessment of reduction in mortality and morbidity) program. J Am Coll Cardiol 59(20):1785–1795. doi:10.1016/j.jacc.2011.12.044

    Article  PubMed  Google Scholar 

  3. Kuusisto J, Karja V, Sipola P, Kholova I, Peuhkurinen K, Jaaskelainen P, Naukkarinen A, Yla-Herttuala S, Punnonen K, Laakso M (2012) Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart 98(13):1007–1013. doi:10.1136/heartjnl-2011-300960

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hu Y, Zhang H, Lu Y, Bai H, Xu Y, Zhu X, Zhou R, Ben J, Chen Q (2011) Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization. Basic Res Cardiol 106(6):1311–1328. doi:10.1007/s00395-011-0204-x

    Article  PubMed  CAS  Google Scholar 

  5. Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, Lavelle EC, Leverkus M, Martin SJ (2013) Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol Cell 49(6):1034–1048. doi:10.1016/j.molcel.2013.01.025

    Article  PubMed  CAS  Google Scholar 

  6. Liu F, Bardhan K, Yang D, Thangaraju M, Ganapathy V, Waller JL, Liles GB, Lee JR, Liu K (2012) NF-kappaB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem 287(30):25530–25540. doi:10.1074/jbc.M112.356279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Priyadharshini B, Thornley TB, Daniels KA, Cuthbert A, Welsh RM, Greiner DL, Brehm MA (2013) Alloreactive CD8 T cells rescued from apoptosis during co-stimulation blockade by Toll-like receptor stimulation remain susceptible to Fas-induced cell death. Immunology 138(4):322–332. doi:10.1111/imm.12044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Werner AB, de Vries E, Tait SW, Bontjer I, Borst J (2002) TRAIL receptor and CD95 signal to mitochondria via FADD, caspase-8/10, Bid, and Bax but differentially regulate events downstream from truncated Bid. J Biol Chem 277(43):40760–40767. doi:10.1074/jbc.M204351200

    Article  PubMed  CAS  Google Scholar 

  9. Llobet D, Eritja N, Domingo M, Bergada L, Mirantes C, Santacana M, Pallares J, Macia A, Yeramian A, Encinas M, Moreno-Bueno G, Palacios J, Lewis RE, Matias-Guiu X, Dolcet X (2011) KSR1 is overexpressed in endometrial carcinoma and regulates proliferation and TRAIL-induced apoptosis by modulating FLIP levels. Am J Pathol 178(4):1529–1543. doi:10.1016/j.ajpath.2010.12.041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S (2011) Analysis of p53 and NF-kappaB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol 226(10):2543–2554. doi:10.1002/jcp.22599

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Takemura G, Kosai K, Takahashi T, Okada H, Miyata S, Yuge K, Nagano S, Esaki M, Khai NC, Goto K, Mikami A, Maruyama R, Minatoguchi S, Fujiwara T, Fujiwara H (2004) Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ Res 95(6):627–636. doi:10.1161/01.RES.0000141528.54850.bd

    Article  PubMed  CAS  Google Scholar 

  12. Wollert KC, Heineke J, Westermann J, Ludde M, Fiedler B, Zierhut W, Laurent D, Bauer MK, Schulze-Osthoff K, Drexler H (2000) The cardiac Fas (APO-1/CD95) receptor/Fas ligand system : relation to diastolic wall stress in volume-overload hypertrophy in vivo and activation of the transcription factor AP-1 in cardiac myocytes. Circulation 101(10):1172–1178

    Article  PubMed  CAS  Google Scholar 

  13. Qiu L, Rivera-Perez JA, Xu Z (2011) A non-specific effect associated with conditional transgene expression based on Cre-loxP strategy in mice. PLoS ONE 6(5):e18778. doi:10.1371/journal.pone.0018778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Zhou B, Pu WT (2012) Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles. Circ Res 111(11):e276–e280. doi:10.1161/CIRCRESAHA.112.275784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Li L, Zhou N, Gong H, Wu J, Lin L, Komuro I, Ge J, Zou Y (2010) Comparison of angiotensin II type 1-receptor blockers to regress pressure overload-induced cardiac hypertrophy in mice. Hypertens Res 33(12):1289–1297. doi:10.1038/hr.2010.182

    Article  PubMed  CAS  Google Scholar 

  16. Zhou N, Li L, Wu J, Gong H, Niu Y, Sun A, Ge J, Zou Y (2010) Mechanical stress-evoked but angiotensin II-independent activation of angiotensin II type 1 receptor induces cardiac hypertrophy through calcineurin pathway. Biochem Biophys Res Commun 397(2):263–269. doi:10.1016/j.bbrc.2010.05.097

    Article  PubMed  CAS  Google Scholar 

  17. Wu J, Bu L, Gong H, Jiang G, Li L, Ma H, Zhou N, Lin L, Chen Z, Ye Y, Niu Y, Sun A, Ge J, Zou Y (2010) Effects of heart rate and anesthetic timing on high-resolution echocardiographic assessment under isoflurane anesthesia in mice. J Ultrasound Med 29(12):1771–1778

    PubMed  Google Scholar 

  18. Wu J, Zhou YQ, Zou Y, Henkelman M (2013) Evaluation of bi-ventricular coronary flow patterns using high-frequency ultrasound in mice with transverse aortic constriction. Ultrasound Med Biol 39(11):2053–2065. doi:10.1016/j.ultrasmedbio.2013.04.022

    Article  PubMed  Google Scholar 

  19. Wu J, You J, Li L, Ma H, Jia J, Jiang G, Chen Z, Ye Y, Gong H, Bu L, Ge J, Zou Y (2012) Early estimation of left ventricular systolic pressure and prediction of successful aortic constriction in a mouse model of pressure overload by ultrasound biomicroscopy. Ultrasound Med Biol 38(6):1030–1039. doi:10.1016/j.ultrasmedbio.2012.01.018

    Article  PubMed  Google Scholar 

  20. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446(7134):444–448. doi:10.1038/nature05602

    Article  PubMed  CAS  Google Scholar 

  21. Imanishi T, Murry CE, Reinecke H, Hano T, Nishio I, Liles WC, Hofsta L, Kim K, O’Brien KD, Schwartz SM, Han DK (2000) Cellular FLIP is expressed in cardiomyocytes and down-regulated in TUNEL-positive grafted cardiac tissues. Cardiovasc Res 48(1):101–110

    Article  PubMed  CAS  Google Scholar 

  22. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2004) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136(3):261–265. doi:10.1093/jb/mvh134

    Article  PubMed  CAS  Google Scholar 

  23. Hou X, Hu Z, Huang X, Chen Y, He X, Xu H, Wang N (2013) Serum osteopontin, but not OPN gene polymorphism, is associated with LVH in essential hypertensive patients. J Mol Med (Berl). doi:10.1007/s00109-013-1099-9

    Google Scholar 

  24. Doetschman T, Azhar M (2012) Cardiac-specific inducible and conditional gene targeting in mice. Circ Res 110(11):1498–1512. doi:10.1161/CIRCRESAHA.112.265066

    Article  PubMed  CAS  Google Scholar 

  25. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109(13):1580–1589. doi:10.1161/01.CIR.0000120390.68287.BB

    Article  PubMed  Google Scholar 

  26. Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102(4):470–479

    Article  PubMed  CAS  Google Scholar 

  27. Panidis IP, Kotler MN, Ren JF, Mintz GS, Ross J, Kalman P (1984) Development and regression of left ventricular hypertrophy. J Am Coll Cardiol 3(5):1309–1320

    Article  PubMed  CAS  Google Scholar 

  28. Steenbergen C, Afshari CA, Petranka JG, Collins J, Martin K, Bennett L, Haugen A, Bushel P, Murphy E (2003) Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am J Physiol Heart Circ Physiol 284(1):H268–H276. doi:10.1152/ajpheart.00707.2002

    PubMed  CAS  Google Scholar 

  29. Feng QZ, Zhao YS, Abdelwahid E (2008) The role of Fas in the progression of ischemic heart failure: prohypertrophy or proapoptosis. Coron Artery Dis 19(7):527–534. doi:10.1097/MCA.0b013e3283093707

    Article  PubMed  Google Scholar 

  30. Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61(4):269–280. doi:10.1016/j.phrs.2009.11.012

    Article  PubMed  CAS  Google Scholar 

  31. Yip GW, Fung JW, Tan YT, Sanderson JE (2009) Hypertension and heart failure: a dysfunction of systole, diastole or both? J Hum Hypertens 23(5):295–306. doi:10.1038/jhh.2008.141

    Article  PubMed  CAS  Google Scholar 

  32. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21(16):5299–5305. doi:10.1128/MCB.21.16.5299-5305.2001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Badorff C, Ruetten H, Mueller S, Stahmer M, Gehring D, Jung F, Ihling C, Zeiher AM, Dimmeler S (2002) Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload. J Clin Invest 109(3):373–381. doi:10.1172/JCI13779

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by Natural Science Fund of Shanghai Committee of Science and Technology grant 12ZR1442100 and Research Fund for the Doctoral Program of Higher Education of China grant 20120071120057.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumei Li or Lili Hou.

Additional information

Ying Huang and Lianpin Wu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wu, L., Wu, J. et al. Cellular FLICE-like inhibitory protein protects against cardiac hypertrophy by blocking ASK1/p38 signaling in mice. Mol Cell Biochem 397, 87–95 (2014). https://doi.org/10.1007/s11010-014-2175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2175-3

Keywords

Navigation