Skip to main content
Log in

Parthenolide induces apoptosis by activating the mitochondrial and death receptor pathways and inhibits FAK-mediated cell invasion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The natural product parthenolide induces apoptosis in cancer cells. However, the mechanism of apoptosis in ovarian cancer cells exposed to parthenolide is not clear. In addition, it is unclear whether parthenolide-induced apoptosis is mediated by the formation of reactive oxygen species and the depletion of GSH contents, and the effect of parthenolide on the invasion and migration of human epithelial ovarian cancer cells has not been studied. Therefore, we investigated the effects of parthenolide exposure on apoptosis, cell adhesion, and migration using the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. The results suggest that parthenolide may induce apoptotic cell death in ovarian carcinoma cell lines by activating the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The apoptotic effect of parthenolide appears to be mediated by the formation of reactive oxygen species and the depletion of GSH. Parthenolide inhibited fetal bovine serum-induced cell adhesion and migration of OVCAR-3 cells, possibly through the suppression the focal adhesion kinase-dependent activation of cytoskeletal-associated components. Therefore, parthenolide might be beneficial in the treatment of epithelial ovarian adenocarcinoma and combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729. doi:10.1016/S1470-2045(03)01277-4

    Article  CAS  PubMed  Google Scholar 

  2. Chon HS, Hu W, Kavanagh JJ (2006) Targeted therapies in gynecologic cancers. Curr Cancer Drug Targets 6:333–363. doi:10.2174/156800906777441799

    Article  CAS  PubMed  Google Scholar 

  3. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163. doi:10.4161/cbt.4.2.1508

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147:239–248. doi:10.1038/sj.bjp.0706556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Merfort I (2011) Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets 12:1560–1573. doi:10.2174/138945011798109437

    Article  CAS  PubMed  Google Scholar 

  6. Mathema VB, Koh YS, Thakuri BC, Sillanpää M (2012) Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation 35:560–565. doi:10.1007/s10753-011-9346-0

    Article  CAS  PubMed  Google Scholar 

  7. Carlisi D, D’Anneo A, Angileri L, Lauricella M, Emanuele S, Santulli A, Vento R, Tesoriere G (2011) Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J Cell Physiol 226:1632–1641. doi:10.1002/jcp.22494

    Article  CAS  PubMed  Google Scholar 

  8. Sohma I, Fujiwara Y, Sugita Y, Yoshioka A, Shirakawa M, Moon JH, Takiguchi S, Miyata H, Yamasaki M, Mori M, Doki Y (2011) Parthenolide, an NF-κB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer. Cancer Genomics Proteomics 8:39–47

    CAS  PubMed  Google Scholar 

  9. Zanotto-Filho A, Braganhol E, Schröder R, de Souza LH, Dalmolin RJ, Pasquali MA, Gelain DP, Battastini AM, Moreira JC (2011) NFκB inhibitors induce cell death in glioblastomas. Biochem Pharmacol 81:412–424. doi:10.1016/j.bcp.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  10. Gao ZW, Zhang DL, Guo CB (2010) Paclitaxel efficacy is increased by parthenolide via nuclear factor-kappaB pathways in in vitro and in vivo human non-small cell lung cancer models. Curr Cancer Drug Targets 10:705–715. doi:10.2174/156800910793605776

    Article  CAS  PubMed  Google Scholar 

  11. Mignotte B, Vayssière JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15. doi:10.1046/j.1432-1327.1998.2520001.x

    Article  CAS  PubMed  Google Scholar 

  12. Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706. doi:10.1080/10715760802317663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Franco R, Cidlowski JA (2006) SLCO/OATP-like transport of glutathione in FasL-induced apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosis. J Biol Chem 281:29542–29557. doi:10.1074/jbc.M602500200

    Article  CAS  PubMed  Google Scholar 

  14. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369. doi:10.1016/S0092-8674(00)81280-5

    Article  CAS  PubMed  Google Scholar 

  15. Kong F, Chen Z, Li Q, Tian X, Zhao J, Yu K, You Y, Zou P (2008) Inhibitory effects of parthenolide on the angiogenesis induced by human multiple myeloma cells and the mechanism. J Huazhong Univ Sci Technol Med Sci 28:525–530. doi:10.1007/s11596-008-0508-8

    Article  CAS  PubMed  Google Scholar 

  16. Liu JW, Cai MX, Xin Y, Wu QS, Ma J, Yang P, Xie HY, Huang DS (2010) Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J Exp Clin Cancer Res 29:108. doi:10.1186/1756-9966-29-108

    Article  PubMed Central  PubMed  Google Scholar 

  17. Oka D, Nishimura K, Shiba M, Nakai Y, Arai Y, Nakayama M, Takayama H, Inoue H, Okuyama A, Nonomura N (2007) Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-κB. Int J Cancer 120:2576–2581. doi:10.1002/ijc.22570

    Article  CAS  PubMed  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  19. Andrisano V, Ballardini R, Hrelia P, Cameli N, Tosti A, Gotti R, Cavrini V (2001) Studies on the photostability and in vitro phototoxicity of Labetalol. Eur J Pharm Sci 12:495–504. doi:10.1016/S0928-0987(00)00218-9

    Article  CAS  PubMed  Google Scholar 

  20. Dai Y, Liu M, Tang W, Li Y, Lian J, Lawrence TS, Xu L (2009) A smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-κB. BMC Cancer 9:392. doi:10.1186/1471-2407-9-392

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wu H, Rao GN, Dai B, Singh P (2000) Autocrine gastrins in colon cancer cells up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-8. J Biol Chem 275:32491–32498. doi:10.1074/jbc.M002458200

    Article  CAS  PubMed  Google Scholar 

  22. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Néel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905. doi:10.1038/sj.cdd.4401434

    Article  CAS  PubMed  Google Scholar 

  23. Fu W, Luo H, Parthasarathy S, Mattson MP (1998) Catecholamines potentiate amyloid β-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 5:229–243. doi:10.1006/nbdi.1998.0192

    Article  CAS  PubMed  Google Scholar 

  24. van Klaveren RJ, Hoet PHM, Pype JL, Demedts M, Nemery B (1997) Increase in γ-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 22:525–534. doi:10.1016/S0891-5849(96)00375-9

    Article  Google Scholar 

  25. Camins A, Pallas M, Silvestre JS (2008) Apoptotic mechanisms involved in neurodegenerative diseases: experimental and therapeutic approaches. Methods Fin Exp Clin Pharmacol 30:43–65. doi:10.1358/mf.2008.30.1.1090962

    Article  CAS  Google Scholar 

  26. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002. doi:10.1038/sj.cdd.4401908

    Article  CAS  PubMed  Google Scholar 

  27. Chen F, Wang W, El-Deiry WS (2010) Current strategies to target p53 in cancer. Biochem Pharmacol 80:724–730. doi:10.1016/j.bcp.2010.04.031

    Article  CAS  PubMed  Google Scholar 

  28. Borutaite V (2010) Mitochondria as decision-makers in cell death. Environ Mol Mutagen 51:406–416. doi:10.1002/em.20564

    CAS  PubMed  Google Scholar 

  29. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922. doi:10.1007/s10495-007-0756-2

    Article  CAS  PubMed  Google Scholar 

  30. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314. doi:10.1038/cdd.2009.107

    Article  CAS  PubMed  Google Scholar 

  31. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012. doi:10.1016/j.cellsig.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  32. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183. doi:10.1042/BJ20110301

    Article  CAS  PubMed  Google Scholar 

  33. Masson-Gadais B, Houle F, Laferriere J, Huot J (2003) Integrin avh3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8:37–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, van de Water B (2005) Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Res 65:4698–4706. doi:10.1158/0008-5472.CAN-04-4126

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A085138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, S.W., Park, E.S. & Lee, C.S. Parthenolide induces apoptosis by activating the mitochondrial and death receptor pathways and inhibits FAK-mediated cell invasion. Mol Cell Biochem 385, 133–144 (2014). https://doi.org/10.1007/s11010-013-1822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1822-4

Keywords

Navigation