Skip to main content
Log in

The emerging role of microRNAs in asthma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Asthma is a common chronic airways disease that worldwide affects people from all ethnic backgrounds. MicroRNAs (miRNAs) are small non-coding RNAs of 18–25 nucleotides that have been shown to regulate gene expression via the RNA interference pathway and found to play fundamental roles in diverse biological and pathological processes. Intriguingly, changes in the expression of several miRNAs are associated with development of asthma. In this review, we summarize the current understanding of the role of miRNAs in asthma to both better understand the pathogenesis of this disease and aid in the formulation of more effective therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Locksley RM (2010) Asthma and allergic inflammation. Cell 140:777–783

    Article  PubMed  CAS  Google Scholar 

  2. Finn PW, Bigby TD (2009) Innate immunity and asthma. Proc Am Thorac Soc 6:260–265

    Article  PubMed  CAS  Google Scholar 

  3. Bergeron C, Al-Ramli W, Hamid Q (2009) Remodeling in asthma. Proc Am Thorac Soc 6:301–305

    Article  PubMed  Google Scholar 

  4. Holgate ST (2008) The airway epithelium is central to the pathogenesis of asthma. Allergol Int 57:1–10

    Article  PubMed  CAS  Google Scholar 

  5. Zhang J, Pare PD, Sandford AJ (2008) Recent advances in asthma genetics. Respir Res 9:1–8

    Article  Google Scholar 

  6. Moffat MF (2008) Genes in asthma: new genes and new ways. Curr Opin Allergy Clin Immunol 8:411–417

    Article  Google Scholar 

  7. Miller RL, Ho S (2008) Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 177:567–573

    Article  PubMed  CAS  Google Scholar 

  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  9. Jiang X, Tsitsiou E, Herrick SE, Lindsay MA (2010) MicroRNAs and the regulation of fibrosis. FEBS J 277:2015–2021

    Article  PubMed  CAS  Google Scholar 

  10. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  PubMed  CAS  Google Scholar 

  11. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  12. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  13. Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118

    Article  PubMed  CAS  Google Scholar 

  14. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  15. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665

    Article  PubMed  CAS  Google Scholar 

  16. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:U86–U119

    Article  Google Scholar 

  17. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  PubMed  CAS  Google Scholar 

  18. Tsitsiou E, Lindsay MA (2009) MicroRNAs and the immune response. Curt Opin Pharmacoly 9:514–520

    Article  CAS  Google Scholar 

  19. Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36

    Article  PubMed  CAS  Google Scholar 

  20. Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8:240

    Article  PubMed  Google Scholar 

  21. Kucharewicz I, Bodzenta-Lukaszyk A, Buczko W (2008) Experimental asthma in rat. Pharmacol Rep 60:783–788

    PubMed  CAS  Google Scholar 

  22. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182:4994–5002

    Article  PubMed  CAS  Google Scholar 

  23. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147

    Article  PubMed  CAS  Google Scholar 

  24. Mattes J, Collison A, Plank M, Phipps S, Foster PS (2009) Antagonism of microRNA-126 suppresses the effector function of T(H)2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA 106:18704–18709

    Article  PubMed  CAS  Google Scholar 

  25. Garbacki N, Di Valentin E, Piette J, Cataldo D, Crahay C (2009) Matrix metalloproteinase 12 silencing: a therapeutic approach to treat pathological lung tissue remodeling? Pulmon Pharmacol Therap 22:267–278

    Article  CAS  Google Scholar 

  26. Di Valentin E, Crahay C, Garbacki N, Hennuy B, Gueders M, Noel A, Foidart JM, Grooten J, Colige A, Piette J, Cataldo D (2009) New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol 296:L185–L197

    Article  PubMed  CAS  Google Scholar 

  27. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C (2007) Allelespecific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81:829–834

    Article  PubMed  CAS  Google Scholar 

  28. Williams AE, Larner-Svensson H, Perry MM, Campbell GA, Herrick SE, Adcock LM, Erjefalt JS, Chung KF, Lindsay MA (2009) MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLOS ONE 4:e5889

    Article  PubMed  Google Scholar 

  29. Liu XD, Nelson A, Wang XQ, Kanaji N, Kim M, Sato T, Nakanishi M, Li YJ, Sun JH, Michalski J, Patil A, Basma H, Rennard SI (2009) MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem Biophys Res Commun 380:177–182

    Article  PubMed  CAS  Google Scholar 

  30. Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1 β-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180:5689–5698

    PubMed  CAS  Google Scholar 

  31. Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M (2009) Down-regulation of miR-133a contributes to up-regulation of RhoA in bronchial smooth muscle cells. Am J Respir Crit Care Med 180:713–719

    Article  PubMed  CAS  Google Scholar 

  32. Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gerthoffer WT, Singer CA (2010) MicroRNA expression in human airway smooth muscle cells Role of miR-25 in regulation of airway smooth muscle phenotype. Am J Respir Cell Mol Biol 42:506–513

    Article  PubMed  CAS  Google Scholar 

  33. Larner-Svensson HM, Williams AE, Tsitsiou E, Perry MM, Jiang XY, Chung KF, Lindsay MA (2010) Pharmacological studies of the mechanism and function of interleukin-1 beta-induced miRNA-146a expression in primary human airway smooth muscle. Respir Res 11:68

    Article  PubMed  Google Scholar 

  34. Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Che 285:29336–29347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Government Academic Exchange Programme (to X.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X. The emerging role of microRNAs in asthma. Mol Cell Biochem 353, 35–40 (2011). https://doi.org/10.1007/s11010-011-0771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0771-z

Keywords

Navigation