Skip to main content
Log in

mTOR mediates RhoA-dependent leptin-induced cardiomyocyte hypertrophy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Obesity is associated with increased leptin production which may contribute to cardiac hypertrophy. However, the mechanism of leptin-induced cardiac hypertrophy remains incompletely understood. The Rho family (RhoA, Rac1, and Cdc42) and mammalian target of rapamycin (mTOR) have recently emerged as important regulators of cell growth. We therefore explored the roles and interrelationships of phosphatidylinositol 3-kinase (PI3K), mTOR, and the Rho family in the regulation of actin polymerization and leptin-induced hypertrophy in cultured neonatal rat ventricular myocytes. Five minutes treatment with leptin (3.1 nM) resulted in activation of RhoA and Rac1 (by 330 and 160%, respectively, P < 0.05) which was significantly attenuated by AG-490 (50 μM) and LY294002 (10 μM), specific inhibitors of JAK2 and PI3K, respectively. However, Cdc42 activity was unaffected by leptin. The hypertrophic effect of leptin was associated with an increase in phosphorylation of p70S6K, the major target of mTOR, by 110% (P < 0.05). The specific mTOR inhibitor rapamycin (10 nM) attenuated leptin-induced RhoA and Rac1 activation. Furthermore, the leptin-induced decrease in the G/F-actin ratio, a measure of actin polymerization, was blunted by rapamycin. Leptin produced activation of the transcriptional factor GATA4 which was attenuated by the RhoA inhibitor C3, the p38 MAPK inhibitor SB203580 (10 μM) as well as rapamycin. Our results demonstrate a critical role for PI3K/mTOR/p70S6K in leptin-induced RhoA activation resulting in cardiomyocyte hypertrophy associated with GATA4 stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karmazyn M, Purdham DM, Rajapurohitam V, Zeidan A (2007) Leptin as a cardiac hypertrophic factor: a potential target for therapeutics. Trends Cardiovasc Med 17:206–211

    Article  PubMed  CAS  Google Scholar 

  2. Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M (2004) Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol 287:H2877–H2884

    Article  PubMed  CAS  Google Scholar 

  3. Zeidan A, Purdham DM, Rajapurohitam V, Javadov S, Chakrabarti S, Karmazyn M (2005) Leptin induces vascular smooth muscle cell hypertrophy through angiotensin II- and endothelin-1-dependent mechanisms and mediates stretch-induced hypertrophy. J Pharmacol Exp Ther 315:1075–1084

    Article  PubMed  CAS  Google Scholar 

  4. Lollmann B, Gruninger S, Stricker-Krongrad A, Chiesi M (1997) Detection and quantification of the leptin receptor splice variants Ob-Ra, b, and, e in different mouse tissues. Biochem Biophys Res Commun 238:648–652

    Article  PubMed  CAS  Google Scholar 

  5. Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M (2003) The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res 93:277–279

    Article  PubMed  CAS  Google Scholar 

  6. Rajapurohitam V, Javadov S, Purdham DM, Kirshenbaum LA, Karmazyn M (2006) An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin II and endothelin-1. J Mol Cell Cardiol 41:265–274

    Article  PubMed  CAS  Google Scholar 

  7. Wold LE, Relling DP, Duan J, Norby FL, Ren J (2002) Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 39:69–74

    Article  PubMed  CAS  Google Scholar 

  8. Zeidan A, Javadov S, Karmazyn M (2006) Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res 72:101–111

    Article  PubMed  CAS  Google Scholar 

  9. Shin HJ, Oh J, Kang SM, Lee JH, Shin MJ, Hwang KC, Jang Y, Chung JH (2005) Leptin induces hypertrophy via p38 mitogen-activated protein kinase in rat vascular smooth muscle cells. Biochem Biophys Res Commun 329:18–24

    Article  PubMed  CAS  Google Scholar 

  10. Abe Y, Ono K, Kawamura T, Wada H, Kita T, Shimatsu A, Hasegawa K (2007) Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol 292:H2387–H2396

    Article  PubMed  CAS  Google Scholar 

  11. Madani S, De Girolamo S, Muñoz DM, Li RK, Sweeney G (2006) Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovasc Res 69:716–725

    Article  PubMed  CAS  Google Scholar 

  12. Tajmir P, Ceddia RB, Li RK, Coe IR, Sweeney G (2004) Leptin increases cardiomyocyte hyperplasia via extracellular signal-regulated kinase- and phosphatidylinositol 3-kinase-dependent signaling pathways. Endocrinology 145:1550–1555

    Article  PubMed  CAS  Google Scholar 

  13. Xu FP, Chen MS, Wang YZ, Yi Q, Lin SB, Chen AF, Luo JD (2004) Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. Circulation 110:1269–1275

    Article  PubMed  CAS  Google Scholar 

  14. Zeidan A, Javadov S, Chakrabarti S, Karmazyn M (2008) Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovasc Res 77:64–72

    Article  PubMed  CAS  Google Scholar 

  15. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471

    Article  PubMed  CAS  Google Scholar 

  16. Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA (2000) Gβγ-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 275:4693–4698

    Article  PubMed  CAS  Google Scholar 

  17. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548

    Article  PubMed  CAS  Google Scholar 

  18. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  19. McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109:3050–3055

    Article  PubMed  CAS  Google Scholar 

  20. Villanueva EC, Myers MG Jr (2008) Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond) 32(Suppl 7):S8–S12

    Article  CAS  Google Scholar 

  21. Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98:730–742

    Article  PubMed  CAS  Google Scholar 

  22. Clerk A, Sugden PH (2000) Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 86:1019–1023

    PubMed  CAS  Google Scholar 

  23. Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98:322–334

    Article  PubMed  CAS  Google Scholar 

  24. Rafail S, Ritis K, Schaefer K, Kourtzelis I, Speletas M, Doumas M, Giaglis S, Kambas K, Konstantinides S, Kartalis G (2008) Leptin induces the expression of functional tissue factor in human neutrophils and peripheral blood mononuclear cells through JAK2-dependent mechanisms and TNFalpha involvement. Thromb Res 122:366–375

    Article  PubMed  CAS  Google Scholar 

  25. Tong KM, Shieh DC, Chen CP, Tzeng CY, Wang SP, Huang KC, Chiu YC, Fong YC, Tang CH (2008) Leptin induces IL-8 expression via leptin receptor, IRS-1, PI3K, Akt cascade and promotion of NF-κB/p300 binding in human synovial fibroblasts. Cell Signal 20:1478–1488

    Article  PubMed  CAS  Google Scholar 

  26. Beltowski J (2006) Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 24:789–801

    Article  PubMed  CAS  Google Scholar 

  27. Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  28. Pracyk JB, Tanaka K, Hegland DD, Kim KS, Sethi R, Rovira II, Blazina DR, Lee L, Bruder JT, Kovesdi I, Goldshmidt-Clermont PJ, Irani K, Finkel T (1999) A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest 102:929–937

    Article  Google Scholar 

  29. Hines WA, Thorburn A (1998) Ras and Rho are required for G#q-induced hypertrophic gene expression in neonatal rat cardiac myocytes. J Mol Cell Cardiol 30:485–494

    Article  PubMed  CAS  Google Scholar 

  30. Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW II, Ross J Jr, Chien KR, Brown JH (1999) Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 103:1627–1634

    Article  PubMed  CAS  Google Scholar 

  31. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105:875–886

    Article  PubMed  CAS  Google Scholar 

  32. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ (2006) Akt1 is required for physiological cardiac growth. Circulation 113:2097–2104

    Article  PubMed  CAS  Google Scholar 

  33. Ha T, Li Y, Gao X, McMullen JR, Shioi T, Izumo S, Kelley JL, Zhao A, Haddad GE, Williams DL, Browder IW, Kao RL, Li C (2005) Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFκB activation in vivo. Free Radic Biol Med 39:1570–1580

    Article  PubMed  CAS  Google Scholar 

  34. Altamirano F, Oyarce C, Silva P, Toyos M, Wilson C, Lavandero S, Uhlén P, Estrada M (2009) Testosterone induces cardiomyocyte hypertrophy through mtorc1 pathway. J Endocrinol 202:299–307

    Article  PubMed  CAS  Google Scholar 

  35. Sandsmark DK, Zhang H, Hegedus B, Pelletier CL, Weber JD, Gutmann DH (2007) Nucleophosmin mediates mammalian target of rapamycin-dependent actin cytoskeleton dynamics and proliferation in neurofibromin-deficient astrocytes. Cancer Res 67:4790–4799

    Article  PubMed  CAS  Google Scholar 

  36. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898

    Article  PubMed  CAS  Google Scholar 

  37. Boluyt MO, Zheng JS, Younes A, Long X, O’Neill L, Silverman H, Lakatta EG, Crow MT (1997) Rapamycin inhibits α1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res 8:176–186

    Google Scholar 

  38. Sadoshima J, Izumo S (1995) Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res 77:1040–1052

    PubMed  CAS  Google Scholar 

  39. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670

    Article  PubMed  CAS  Google Scholar 

  40. Yanazume T, Hasegawa K, Wada H, Morimoto T, Abe M, Kawamura T, Sasayama S (2002) Rho/ROCK pathway contributes to the activation of extracellular signal-regulated kinase/GATA-4 during myocardial cell hypertrophy. J Biol Chem 277:8618–8625

    Article  PubMed  CAS  Google Scholar 

  41. Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. MOP 62764 from the Canadian Institutes of Health Research. M. Karmazyn holds a Canada Research Chair in Experimental Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Karmazyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeidan, A., Hunter, J.C., Javadov, S. et al. mTOR mediates RhoA-dependent leptin-induced cardiomyocyte hypertrophy. Mol Cell Biochem 352, 99–108 (2011). https://doi.org/10.1007/s11010-011-0744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0744-2

Keywords

Navigation