Skip to main content
Log in

Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Targeted deletion of membrane guanylate cyclases (GCs) has yielded new information concerning their function. Here, we summarize briefly recent results of laboratory generated non-photoreceptor GC knockouts characterized by complex phenotypes affecting the vasculature, heart, brain, kidney, and other tissues. The main emphasis of the review, however, addresses the two GCs expressed in retinal photoreceptors, termed GC-E and GC-F. Naturally occurring GC-E (GUCY2D) null alleles in human and chicken are associated with an early onset blinding disorder, termed “Leber congenital amaurosis type 1” (LCA-1), characterized by extinguished scotopic and photopic ERGs, and retina degeneration. In mouse, a GC-E null genotype produces a recessive cone dystrophy, while rods remain functional. Rod function is supported by the presence of GC-F (Gucy2f), a close relative of GC-E. Deletion of Gucy2f has very little effect on rod and cone physiology and survival. However, a GC-E/GC-F double knockout (GCdko) phenotypically resembles human LCA-1 with extinguished ERGs and rod/cone degeneration. In GCdko rods, PDE6 and GCAPs are absent in outer segments. In contrast, GC-E−/− cones lack proteins of the entire phototransduction cascade. These results suggest that GC-E may participate in transport of peripheral membrane proteins from the endoplasmic reticulum (ER) to the outer segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

GC:

Guanylate cyclase

GCdko:

GC-E/GC-F double knockout

GCAP:

Guanylate cyclase-activating protein

LCA:

Leber congenital amaurosis

PDE6:

cGMP-specific photoreceptor phosphodiesterase

TGN:

trans-Golgi network

WT:

Wild-type

References

  1. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709

    Article  PubMed  CAS  Google Scholar 

  2. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    PubMed  CAS  Google Scholar 

  3. Potter LR (2005) Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci 10:1205–1220

    Article  PubMed  CAS  Google Scholar 

  4. Sitaramayya A (2002) Soluble guanylate cyclases in the retina. Mol Cell Biochem 230:177–186

    Article  PubMed  CAS  Google Scholar 

  5. Noll GN, Billek M, Pietruck C, Schmidt KF (1994) Inhibition of nitric oxide synthase alters light responses and dark voltage of amphibian photoreceptors. Neuropharmacology 33:1407–1412

    Article  PubMed  CAS  Google Scholar 

  6. Cao L, Blute TA, Eldred WD (2000) Localization of heme oxygenase-2 and modulation of cGMP levels by carbon monoxide and/or nitric oxide in the retina. Vis Neurosci 17:319–329

    Article  PubMed  CAS  Google Scholar 

  7. Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, Barylko B, Redfield MM, Burnett JC Jr (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258

    Article  PubMed  CAS  Google Scholar 

  8. Kuhn M (2005) Cardiac and intestinal natriuretic peptides: insights from genetically modified mice. Peptides 26:1078–1085

    Article  PubMed  CAS  Google Scholar 

  9. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68

    Article  PubMed  CAS  Google Scholar 

  10. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    Article  PubMed  CAS  Google Scholar 

  11. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL (2004) Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA 101:17300–17305

    Article  PubMed  CAS  Google Scholar 

  12. Olney RC, Bukulmez H, Bartels CF, Prickett TC, Espiner EA, Potter LR, Warman ML (2006) Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J Clin Endocrinol Metab 91:1229–1232

    Article  PubMed  CAS  Google Scholar 

  13. Sogawa C, Tsuji T, Shinkai Y, Katayama K, Kunieda T (2007) Short-limbed dwarfism: slw is a new allele of Npr2 causing chondrodysplasia. J Hered 98:575–580

    Article  PubMed  CAS  Google Scholar 

  14. Tsuji T, Kunieda T (2005) A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem 280:14288–14292

    Article  PubMed  CAS  Google Scholar 

  15. Schulz S, Lopez MJ, Kuhn M, Garbers DL (1997) Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest 100:1590–1595

    Article  PubMed  CAS  Google Scholar 

  16. Mann EA, Steinbrecher KA, Stroup C, Witte DP, Cohen MB, Giannella RA (2005) Lack of guanylyl cyclase C, the receptor forEscherichia coli heat-stable enterotoxin, results in reduced polyp formation and increased apoptosis in the multiple intestinal neoplasia (Min) mouse model. Int J Cancer 116:500–505

    Article  PubMed  CAS  Google Scholar 

  17. Juilfs DM, Fulle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 94:3388–3395

    Article  PubMed  CAS  Google Scholar 

  18. Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512

    Article  PubMed  CAS  Google Scholar 

  19. Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445

    Article  PubMed  CAS  Google Scholar 

  20. Kuhn M, Ng CK, Su YH, Kilic A, Mitko D, Bien-Ly N, Komuves LG, Yang RB (2004) Identification of an orphan guanylate cyclase receptor selectively expressed in mouse testis. Biochem J 379:385–393

    Article  PubMed  CAS  Google Scholar 

  21. Lin H, Cheng CF, Hou HH, Lian WS, Chao YC, Ciou YY, Djoko B, Tsai MT, Cheng CJ, Yang RB (2008) Disruption of guanylyl cyclase-G protects against acute renal injury. J Am Soc Nephrol 19:339–348

    Article  PubMed  CAS  Google Scholar 

  22. Young JM, Waters H, Dong C, Fulle HJ, Liman ER (2007) Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS ONE 2:e884

    Article  PubMed  CAS  Google Scholar 

  23. Polans A, Baehr W, Palczewski K (1996) Turned on by Ca2+! The physiology and pathology of Ca2+ binding proteins in the retina. Trends Neurosci 19:547–554

    Article  PubMed  CAS  Google Scholar 

  24. Wensel TG (2008) Signal transducing membrane complexes of photoreceptor outer segments. Vis Res 48:2052–2061

    Article  PubMed  CAS  Google Scholar 

  25. Lamb TD, Pugh EN Jr (2006) Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci 47:5138–5152

    Article  Google Scholar 

  26. Arshavsky VY, Lamb TD, Pugh EN Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187

    Article  PubMed  CAS  Google Scholar 

  27. Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, Lowe DG (1992) Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 9:727–737

    Article  PubMed  CAS  Google Scholar 

  28. Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744

    PubMed  CAS  Google Scholar 

  29. Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17:429–473

    Article  PubMed  CAS  Google Scholar 

  30. Koch KW, Duda T, Sharma RK (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem 230:97–106

    Article  PubMed  CAS  Google Scholar 

  31. Baehr W, Karan S, Maeda T, Luo DG, Li S, Bronson JD, Watt CB, Yau KW, Frederick JM, Palczewski K (2007) The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 282:8837–8847

    Article  PubMed  CAS  Google Scholar 

  32. Liu Q, Tan G, Levenkova N, Li T, Pugh EN Jr, Rux JJ, Speicher DW, Pierce EA (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6:1299–1317

    Article  PubMed  CAS  Google Scholar 

  33. Helten A, Saftel W, Koch KW (2007) Expression level and activity profile of membrane bound guanylate cyclase type 2 in rod outer segments. J Neurochem 103:1439–1446

    Article  PubMed  CAS  Google Scholar 

  34. Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by Calcium and a soluble activator. Neuron 12:1345–1352

    Article  PubMed  CAS  Google Scholar 

  35. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92:5535–5539

    Article  PubMed  CAS  Google Scholar 

  36. Imanishi Y, Li N, Sowa ME, Lichtarge O, Wensel TG, Saperstein DA, Baehr W, Palczewski K (2002) Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur J Neurosci 15:63–78

    Article  PubMed  Google Scholar 

  37. Liu X, Seno K, Nishizawa Y, Hayashi F, Yamazaki A, Matsumoto H, Wakabayashi T, Usukura J (1994) Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59:761–768

    Article  PubMed  CAS  Google Scholar 

  38. Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742

    Article  PubMed  CAS  Google Scholar 

  39. Haire SE, Pang J, Boye SL, Sokal I, Craft CM, Palczewski K, Hauswirth WW, Semple-Rowland SL (2006) Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 47:3745–3753

    Article  PubMed  Google Scholar 

  40. Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK (2002) Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J 21:2547–2556

    Article  PubMed  CAS  Google Scholar 

  41. Venkataraman V, Duda T, Vardi N, Koch KW, Sharma RK (2003) Calcium-modulated guanylate cyclase transduction machinery in the photoreceptor–bipolar synaptic region. Biochemistry 42:5640–5648

    Article  PubMed  CAS  Google Scholar 

  42. Venkataraman V, Nagele R, Duda T, Sharma RK (2000) Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence. Biochemistry 39:6042–6052

    Article  PubMed  CAS  Google Scholar 

  43. Duda T, Venkataraman V, Krishnan A, Nagele RG, Sharma RK (2001) Negatively calcium-modulated membrane guanylate cyclase signaling system in the rat olfactory bulb. Biochemistry 40:4654–4662

    Article  PubMed  CAS  Google Scholar 

  44. Jankowska A, Burczynska B, Duda T, Warchol JB, Sharma RK (2007) Calcium-modulated rod outer segment membrane guanylate cyclase type 1 transduction machinery in the testes. J Androl 28:50–58

    Article  PubMed  CAS  Google Scholar 

  45. Seebacher T, Beitz E, Kumagami H, Wild K, Ruppersberg JP, Schultz JE (1999) Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear. Hear Res 127:95–102

    Article  PubMed  CAS  Google Scholar 

  46. Shao RX, Otsuka M, Kato N, Chang JH, Muroyama R, Taniguchi H, Moriyama M, Wang Y, Kawabe T, Omata M (2005) No mutations in the tyrosine kinases of human hepatic, pancreatic, and gastric cancer cell lines. J Gastroenterol 40:918

    Article  PubMed  Google Scholar 

  47. Palczewski K, Polans AS, Baehr W, Ames JB (2000) Calcium binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 22:337–350

    Article  PubMed  CAS  Google Scholar 

  48. Sokal I, Li N, Verlinde CL, Haeseleer F, Baehr W, Palczewski K (2000) Ca2+-binding proteins in the retina: from discovery to etiology of human disease. Biochim Biophys Acta 1498:233–251

    Article  PubMed  CAS  Google Scholar 

  49. Dizhoor AM, Hurley JB (1999) Regulation of photoreceptor membrane guanylyl cyclases by guanylyl cyclase activator proteins. Methods 19:521–531

    Article  PubMed  CAS  Google Scholar 

  50. Koch KW (2002) Target recognition of guanylate cyclase by guanylate cyclase-activating proteins. Adv Exp Med Biol 514:349–360

    PubMed  CAS  Google Scholar 

  51. Duda T, Goraczniak RM, Sharma RK (1996) Molecular characterization of S100A1–S100B protein in retina and its activation mechanism of bovine photoreceptor guanylate cyclase. Biochemistry 35:6263–6266

    Article  PubMed  CAS  Google Scholar 

  52. Kumar VD, Vijay-Kumar S, Krishnan A, Duda T, Sharma RK (1999) A second calcium regulator of rod outer segment membrane guanylate cyclase, ROS-GC1: neurocalcin. Biochemistry 38:12614–12620

    Article  PubMed  CAS  Google Scholar 

  53. Goraczniak RM, Duda T, Sitaramayya A, Sharma RK (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase. Biochem J 302:455–461

    PubMed  CAS  Google Scholar 

  54. Perrault I, Hanein S, Gerber S, Lebail B, Vlajnik P, Barbet F, Ducroq D, Dufier JL, Munnich A, Kaplan J, Rozet JM (2005) A novel mutation in the GUCY2D gene responsible for an early onset severe RP different from the usual GUCY2D-LCA phenotype. Hum Mutat 25:222

    Article  PubMed  CAS  Google Scholar 

  55. Yang RB, Fulle HJ, Garbers DL (1996) Chromosomal localization and genomic organization of genes encoding guanylyl cyclase receptors expressed in olfactory sensory neurons and retina. Genomics 31:367–372

    Article  PubMed  CAS  Google Scholar 

  56. Wood LD, Calhoun ES, Silliman N, Ptak J, Szabo S, Powell SM, Riggins GJ, Wang TL, Yan H, Gazdar A, Kern SE, Pennacchio L, Kinzler KW, Vogelstein B, Velculescu VE (2006) Somatic mutations of GUCY2F, EPHA3, and NTRK3 in human cancers. Hum Mutat 27:1060–1061

    Article  PubMed  Google Scholar 

  57. Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J (2000) Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet 8:578–582

    Article  PubMed  CAS  Google Scholar 

  58. Perrault I, Rozet J-M, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnermaison M, Le Paslier D, Frezal J, Dufier J-L, Pittler SJ, Munnich A, Kaplan J (1996) Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 14:461–464

    Article  PubMed  CAS  Google Scholar 

  59. Yzer S, Leroy BP, De BE, de Ravel TJ, Zonneveld MN, Voesenek K, Kellner U, Ciriano JP, de Faber JT, Rohrschneider K, Roepman R, den Hollander AI, Cruysberg JR, Meire F, Casteels I, van Moll-Ramirez NG, Allikmets R, Van den Born LI, Cremers FP (2006) Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci 47:1167–1176

    Article  PubMed  Google Scholar 

  60. Milam AH, Barakat MR, Gupta N, Rose L, Aleman TS, Pianta MJ, Cideciyan AV, Sheffield VC, Stone EM, Jacobson SG (2003) Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis. Ophthalmology 110:549–558

    Article  PubMed  Google Scholar 

  61. Tucker CL, Ramamurthy V, Pina AL, Loyer M, Dharmaraj S, Li Y, Maumenee IH, Hurley JB, Koenekoop RK (2004) Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects. Mol Vis 10:297–303

    PubMed  CAS  Google Scholar 

  62. Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang R-B, Garbers DL, Bird AC, Moore AT, Hunt DF (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant con-rod dystrophy. Hum Mol Genet 7:1179–1184

    Article  PubMed  CAS  Google Scholar 

  63. Perrault I, Rozet JM, Gerber S, Kelsell RE, Souied E, Cabot A, Hunt DM, Munnich A, Kaplan J (1998) A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63:651–654

    Article  PubMed  CAS  Google Scholar 

  64. Payne AM, Morris AG, Downes SM, Johnson S, Bird AC, Moore AT, Bhattacharya SS, Hunt DM (2001) Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J Med Genet 38:611–614

    Article  PubMed  CAS  Google Scholar 

  65. Downes SM, Payne AM, Kelsell RE, Fitzke FW, Holder GE, Hunt DM, Moore AT, Bird AC (2001) Autosomal dominant cone-rod dystrophy with mutations in the guanylate cyclase 2D gene encoding retinal guanylate cyclase-1. Arch Ophthalmol 119:1667–1673

    PubMed  CAS  Google Scholar 

  66. Wilkie SE, Newbold RJ, Deery E, Walker CE, Stinton I, Ramamurthy V, Hurley JB, Bhattacharya SS, Warren MJ, Hunt DM (2000) Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum Mol Genet 9:3065–3073

    Article  PubMed  CAS  Google Scholar 

  67. Tucker CL, Woodcock SC, Kelsell RE, Ramamurthy V, Hunt DM, Hurley JB (1999) Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc Natl Acad Sci USA 96:9039–9044

    Article  PubMed  CAS  Google Scholar 

  68. Ramamurthy V, Tucker C, Wilkie SE, Daggett V, Hunt DM, Hurley JB (2001) Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J Biol Chem 276:26218–26229

    Article  PubMed  CAS  Google Scholar 

  69. Semple-Rowland SL, Cheng KM (1999) rd and rc chickens carry the same GC1 null allele (GUCY1*). Exp Eye Res 69:579–581

    Article  PubMed  CAS  Google Scholar 

  70. Semple-Rowland SL, Lee NR, Van-Hooser JP, Palczewski K, Baehr W (1998) A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci USA 95:1271–1276

    Article  PubMed  CAS  Google Scholar 

  71. Semple-Rowland SL, Lee NR (2000) Avian models of inherited retinal disease. Methods Enzymol 316:526–536

    Article  PubMed  CAS  Google Scholar 

  72. Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, Calvas P, Dollfus H, Hamel C, Lopponen T, Munier F, Santos L, Shalev S, Zafeiriou D, Dufier JL, Munnich A, Rozet JM, Kaplan J (2004) Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 23:306–317

    Article  PubMed  CAS  Google Scholar 

  73. Williams ML, Coleman JE, Haire SE, Aleman TS, Cideciyan AV, Sokal I, Palczewski K, Jacobson SG, Semple-Rowland SL (2006) Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 3:e201

    Article  PubMed  CAS  Google Scholar 

  74. Semple-Rowland SL, Green DA (1994) Molecular characterization of the α’-subunit of cone photoreceptor cGMP phosphodiesterase in normal and rd chicken. Exp Eye Res 59:365–372

    Article  PubMed  CAS  Google Scholar 

  75. Semple-Rowland SL, Green DA (1994) Molecular and biochemical analyses of Iodopsin in rd chick retina. Invest Ophthalmol Vis Sci 35:2550–2557

    PubMed  CAS  Google Scholar 

  76. Semple-Rowland S, Gorczyca WA, Buczylko J, Ruiz CC, Subbaraya I, Helekar BS, Palczewski K, Baehr W (1996) Expression of GCAP1 and GCAP2 in the retinal degeneration (rd) chicken retina. FEBS Lett 385:47–52

    Article  PubMed  CAS  Google Scholar 

  77. Semple-Rowland SL, Larkin P, Bronson JD, Nykamp K, Streit WJ, Baehr W (1999) Characterization of the chicken GCAP gene array and analyses of GCAP1, GCAP2, and GC1 gene expression in normal and rd chicken pineal. Mol Vis 5:14

    PubMed  CAS  Google Scholar 

  78. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19:5889–5897

    PubMed  CAS  Google Scholar 

  79. Coleman JE, Zhang Y, Brown GA, Semple-Rowland SL (2004) Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice. Invest Ophthalmol Vis Sci 45:3397–3403

    Article  PubMed  Google Scholar 

  80. Anant JS, Ong OC, Xie H, Clarke S, O’Brien PJ, Fung BKK (1992) In vivo differential prenylation of retinal cyclic GMP phosphodiesterase catalytic subunits. J Biol Chem 267:687–690

    PubMed  CAS  Google Scholar 

  81. Qin N, Pittler SJ, Baehr W (1992) In vitro isoprenylation and membrane association of mouse rod photoreceptor cGMP phosphodiesterase α and β subunits expressed in bacteria. J Biol Chem 267:8458–8463

    PubMed  CAS  Google Scholar 

  82. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH (1999) Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97:877–887

    Article  PubMed  CAS  Google Scholar 

  83. Deretic D (2006) A role for rhodopsin in a signal transduction cascade that regulates membrane trafficking and photoreceptor polarity. Vis Res 46:4427–4433

    Article  PubMed  CAS  Google Scholar 

  84. Zhang H, Li S, Doan T, Rieke F, Detwiler PB, Frederick JM, Baehr W (2007) Deletion of PrBP/{delta} impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc Natl Acad Sci USA 104:8857–8862

    Article  PubMed  CAS  Google Scholar 

  85. Karan S, Zhang H, Li S, Frederick JM, Baehr W (2008) A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vis Res 48:442–452

    Article  PubMed  CAS  Google Scholar 

  86. Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237:1982–1992

    Article  PubMed  Google Scholar 

  87. Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL, Rosenbaum JL, Witman GB, Besharse JC (2002) The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157:103–113

    Article  PubMed  CAS  Google Scholar 

  88. Coleman JE, Semple-Rowland SL (2005) GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells. Invest Ophthalmol Vis Sci 46:12–16

    Article  PubMed  Google Scholar 

  89. Fan J, Rohrer B, Frederick JM, Baehr W, Crouch RK (2008) Rpe65−/− and Lrat−/− mice: comparable models of Leber congenital amaurosis. Invest Ophthalmol Vis Sci 49:2384–2389

    Article  PubMed  Google Scholar 

  90. Zhang H, Fan J, Li S, Karan S, Rohrer B, Palczewski K, Frederick JM, Crouch RK, Baehr W (2008) Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J Neurosci 28:4008–4014

    Article  PubMed  CAS  Google Scholar 

  91. Avasthi P, Watt CB, Williams DS, Le YZ, Li S, Chen C-K, Marc RE, Frederick JM, Baehr W (2009) Trafficking of membrane proteins to cone but not rod outer segments is dependent on heterotrimeric kinesin-II. J Neurosci 29:14287–14298

    Google Scholar 

  92. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, LaVail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    Article  PubMed  CAS  Google Scholar 

  93. Rozet JM, Perrault I, Gerber S, Hanein S, Barbet F, Ducroq D, Souied E, Munnich A, Kaplan J (2001) Complete abolition of the retinal-specific guanylyl cyclase (retGC-1) catalytic ability consistently leads to Leber congenital amaurosis (LCA). Invest Ophthalmol Vis Sci 42:1190–1192

    PubMed  CAS  Google Scholar 

  94. Lotery AJ, Namperumalsamy P, Jacobson SG, Weleber RG, Fishman GA, Musarella MA, Hoyt CS, Heon E, Levin A, Jan J, Lam B, Carr RE, Franklin A, Radha S, Andorf JL, Sheffield VC, Stone EM (2000) Mutation analysis of 3 genes in patients with Leber congenital amaurosis. Arch Ophthalmol 118:538–543

    PubMed  CAS  Google Scholar 

  95. Duda T, Venkataraman V, Goraczniak R, Lange C, Koch KW, Sharma RK (1999) Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber’s congenital amaurosis. Biochemistry 38:509–515

    Article  PubMed  CAS  Google Scholar 

  96. El-Shanti H, Al-Salem M, El-Najjar M, Ajlouni K, Beck J, Sheffiled VC, Stone EM (1999) A nonsense mutation in the retinal specific guanylate cyclase gene is the cause of Leber congenital amaurosis in a large inbred kindred from Jordan. J Med Genet 36:862–865

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by RO1 EY08123, RO1 EY019298, P30 EY014800 and a Center Grant from the Foundation Fighting Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Baehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karan, S., Frederick, J.M. & Baehr, W. Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Mol Cell Biochem 334, 141–155 (2010). https://doi.org/10.1007/s11010-009-0322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0322-z

Keywords

Navigation