Skip to main content
Log in

Brefeldin A activates CHOP promoter at the AARE, ERSE and AP-1 elements

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Brefeldin A induces apoptosis in PC-3 and MCF-7 cells at a concentration of 30 ng/ml. RT-PCR analyses showed up-regulation of CHOP/GADD153 and splicing of XBP-1 mRNA in brefeldin A-treated cells. CHOP promoter-luciferase reporter assays demonstrated activation of AARE, ERSE, and AP-1 elements of CHOP promoter by brefeldin A treatment. The activation of these elements was not affected by preincubation of cells with N-acetyl-cysteine (NAC), l-buthionine-(S,R)-sulfoximine (BSO), and c-Jun N-terminal kinase (JNK) inhibitor (SP600125), suggesting that activation of CHOP promoter by brefeldin A may not involve oxidative stress or JNK signaling pathway. On the other hand, brefeldin A-induced apoptosis was not affected by NAC and BSO pretreatment, but was completely suppressed by JNK inhibitor pretreatment. Our results suggest that although CHOP is up-regulated by brefeldin A, it is not a major mediator of brefeldin A-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AARE:

Amino acid response element

BFA:

Brefeldin A

BSO:

l-Buthionine-(S,R)-sulfoximine

ER:

Endoplasmic reticulum

ERSE:

ER Stress response element

JNK:

c-Jun N-terminal kinase

NAC:

N-Acetyl-cysteine

PDTC:

Pyrrolidine dithiocarbamate

References

  1. Luethy JD, Holbrook NJ (1992) Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Res 52:5–10

    PubMed  CAS  Google Scholar 

  2. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ et al (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein(CHOP/GADD153). Mol Cell Biol 16:4273–4280

    PubMed  CAS  Google Scholar 

  3. Ubeda M, Habener JF (2000) CHOP gene expression in response to endoplasmic-reticular stress requires NFY interaction with different domains of a conserved DNA-binding element. Nucleic Acids Res 28:4987–4997. doi:10.1093/nar/28.24.4987

    Article  PubMed  CAS  Google Scholar 

  4. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–6767. doi:10.1128/MCB.20.18.6755-6767.2000

    Article  PubMed  CAS  Google Scholar 

  5. Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M, Fafournoux P (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol 20:7192–7204. doi:10.1128/MCB.20.19.7192-7204.2000

    Article  PubMed  CAS  Google Scholar 

  6. Cherasse Y, Maurin AC, Chaveroux C, Jousse C, Carraro V, Parry L et al (2007) The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP. Nucleic Acids Res 35:5954–5965. doi:10.1093/nar/gkm642

    Article  PubMed  CAS  Google Scholar 

  7. van der Sanden MH, Meems H, Houweling M, Helms JB, Vaandrager AB (2004) Induction of CCAAT/enhancer-binding protein (C/EBP)-homologous protein/growth arrest and DNA damage-inducible protein 153 expression during inhibition of phosphatidylcholine synthesis is mediated via activation of a C/EBP-activating transcription factor-responsive element. J Biol Chem 279:52007–52015. doi:10.1074/jbc.M405577200

    Article  PubMed  Google Scholar 

  8. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365. doi:10.1016/S0022-2836(02)00234-6

    Article  PubMed  CAS  Google Scholar 

  9. Guyton KZ, Xu Q, Holbrook NJ (1996) Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J 314:547–554

    PubMed  CAS  Google Scholar 

  10. Horibe T, Hoogenraad NJ (2007) The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS ONE 2:e835. doi:10.1371/journal.pone.0000835

    Article  PubMed  Google Scholar 

  11. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389. doi:10.1038/sj.cdd.4401373

    Article  PubMed  CAS  Google Scholar 

  12. Barone MV, Crozat A, Tabaee A, Philipson L, Ron D (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 8:453–464. doi:10.1101/gad.8.4.453

    Article  PubMed  CAS  Google Scholar 

  13. Friedman AD (1996) GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res 56:3250–3256

    PubMed  CAS  Google Scholar 

  14. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259. doi:10.1128/MCB.21.4.1249-1259.2001

    Article  PubMed  CAS  Google Scholar 

  15. Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263:18545–18552

    PubMed  CAS  Google Scholar 

  16. Mordente JA, Konno S, Chen Y, Wu JM, Tazaki H, Mallough C (1998) The effects of brefeldin A (BFA) on cell cycle progression involving the modulation of the retinoblastoma protein (pRB) in PC-3 prostate cancer cells. J Urol 159:275–279. doi:10.1016/S0022-5347(01)64081-3

    Article  PubMed  CAS  Google Scholar 

  17. Chapman JR, Tazaki H, Mallough C, Konno S (1999) Brefeldin A-induced apoptosis in prostatic cancer DU-145 cells: a possible p53-independent death pathway. BJU Int 83:703–708. doi:10.1046/j.1464-410x.1999.00973.x

    Article  PubMed  CAS  Google Scholar 

  18. Guo H, Tittle TV, Allen H, Maziarz RT (1998) Brefeldin A-mediated apoptosis requires the activation of caspases and is inhibited by Bcl-2. Exp Cell Res 245:57–68. doi:10.1006/excr.1998.4235

    Article  PubMed  CAS  Google Scholar 

  19. Rao RV, Hermel E, Castro-Obregon S, Del Rio G, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program, Mechanism of caspase activation. J Biol Chem 276:33869–33874. doi:10.1074/jbc.M102225200

    Article  PubMed  CAS  Google Scholar 

  20. Brewster JL, Linseman DA, Bouchard RJ, Loucks FA, Precht TA, Esch EA et al (2006) Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthase kinase-3 beta and a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol Cell Neurosci 32:242–253. doi:10.1016/j.mcn.2006.04.006

    Article  PubMed  CAS  Google Scholar 

  21. Murakami Y, Aizu-Yokota E, Sonoda Y, Ohta S, Kasahara T (2007) Suppression of endoplasmic reticulum stress-induced caspase activation and cell death by the overexpression of Bcl-xL or Bcl-2. J Biochem 141:401–410. doi:10.1093/jb/mvm044

    Article  PubMed  CAS  Google Scholar 

  22. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885. doi:10.1038/sj.embor.7400779

    Article  PubMed  CAS  Google Scholar 

  23. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18:3066–3077. doi:10.1101/gad.1250704

    Article  PubMed  CAS  Google Scholar 

  24. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y et al (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14–3-3 proteins. EMBO J 23:1889–1899. doi:10.1038/sj.emboj.7600194

    Article  PubMed  CAS  Google Scholar 

  25. Okuno S, Saito A, Hayashi T, Chan PH (2004) The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci 24:7879–7887. doi:10.1523/JNEUROSCI.1745-04.2004

    Article  PubMed  CAS  Google Scholar 

  26. Song L, De Sarno P, Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277:44701–44708. doi:10.1074/jbc.M206047200

    Article  PubMed  CAS  Google Scholar 

  27. Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA et al (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24:9993–10002. doi:10.1523/JNEUROSCI.2057-04.2004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project is funded, in part, under a grant with the Pennsylvania Department of Health. The Department specifically disclaims responsibility for any analyses, interpretations, or conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. M. Kwok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, S.C.M., Daskal, I. Brefeldin A activates CHOP promoter at the AARE, ERSE and AP-1 elements. Mol Cell Biochem 319, 203–208 (2008). https://doi.org/10.1007/s11010-008-9893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9893-3

Keywords

Navigation