Skip to main content
Log in

Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2α/DRB complex

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as “anomalous dispersion” and can be always observed with “soft” X-rays (wavelength around 2 Å) since they match the absorption edges of sulfur and chlorine. A particularly useful application of this phenomenon is the experimental detection of the sub-structures of the anomalous scatterers in protein crystals. We demonstrate this here with a crystal of a C-terminally truncated variant of human CK2α to which two molecules of the inhibitor 5,6-dichloro-1-β-d-ribo-furanosyl-benzimidazole (DRB) are bound. The structure of this co-crystal has been solved recently. For this study we measured an additional diffraction data set at a wavelength of 2 Å which showed strong anomalous dispersion effects. On the basis of these effects we detected all sulfur atoms of the protein, the two liganded DRB molecules and a total of 16 additional chloride ions some of them emerging at positions filled with water molecules in previous structure determinations. A number of chloride ions are bound to structural and functional important locations fitting to the constitutive activity and the acidophilic substrate specificity of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mueller-Dieckmann C, Polentarutti M, Djinovic Carugo K et al (2004) On the routine use of soft X-rays in macromolecular crystallography. Part II. Data-collection wavelength and scaling models. Acta Crystallogr D 60:28–38. doi:10.1107/S0907444903020833

    Article  PubMed  Google Scholar 

  2. Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9:1665–1672

    PubMed  CAS  Google Scholar 

  3. Debreczeni JE, Bunkóczi G, Ma Q et al (2003) In-house measurement of the sulfur anomalous signal and its use for phasing. Acta Crystallogr D 59:688–696. doi:10.1107/S0907444903002646

    Article  PubMed  Google Scholar 

  4. Mueller-Dieckmann C, Panjikar S, Schmidt A et al (2007) On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. Acta Crystallogr D 63:366–380. doi:10.1107/S0907444906055624

    Article  PubMed  Google Scholar 

  5. Raaf J, Brunstein E, Issinger O-G et al (2008) The CK2a/CK2β interface of human protein kinase CK2 harbors a binding pocket for small molecules. Chem Biol 15:111–117. doi:10.1016/j.chembiol.2007.12.012

    Article  PubMed  CAS  Google Scholar 

  6. Ermakova I, Boldyreff B, Issinger O-G et al (2003) Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit. J Mol Biol 330:925–934. doi:10.1016/S0022-2836(03)00638-7

    Article  PubMed  CAS  Google Scholar 

  7. Meggio F, Shugar D, Pinna LA (1990) Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1. Eur J Biochem 187:89–94. doi:10.1111/j.1432-1033.1990.tb15280.x

    Article  PubMed  CAS  Google Scholar 

  8. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326. doi:10.1016/S0076-6879(97)76066-X

    Article  CAS  Google Scholar 

  9. Collaborative Computing Project N (1994) CCP4 suite: programs for protein crystallography. Acta Crystallogr D 50:760–763. doi:10.1107/S0907444994003112

    Article  Google Scholar 

  10. Jones TA, Zou J-Y, Cowan SW et al (1991) Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr A 47:110–119. doi:10.1107/S0108767390010224

    Article  PubMed  Google Scholar 

  11. Zheng J, Trafny EA, Knighton DR et al (1993) 2.2 Å refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr D 49:362–365. doi:10.1107/S0907444993000423

    Article  PubMed  CAS  Google Scholar 

  12. Yde CW, Ermakova I, Issinger O-G et al (2005) Inclining the purine base binding plane in protein kinase CK2 by exchanging the flanking side-chains generates a preference for ATP as a cosubstrate. J Mol Biol 347:399–414. doi:10.1016/j.jmb.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  13. Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution. EMBO J 17:2451–2462. doi:10.1093/emboj/17.9.2451

    Article  PubMed  CAS  Google Scholar 

  14. Pargellis C, Tong L, Churchill L et al (2002) Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Biol 9:268–272. doi:10.1038/nsb770

    Article  PubMed  CAS  Google Scholar 

  15. Niefind K, Yde CW, Ermakova I et al (2007) Evolved to be active: sulfate ions define substrate recognition sites of CK2alpha and emphasise its exceptional role within the CMGC family of eukaryotic protein kinases. J Mol Biol 370:427–438. doi:10.1016/j.jmb.2007.04.068

    Article  PubMed  CAS  Google Scholar 

  16. Traxler P, Furet P (1999) Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther 82:195–206. doi:10.1016/S0163-7258(98)00044-8

    Article  PubMed  CAS  Google Scholar 

  17. Battistutta R, Mazzorana M, Sarno S et al (2005) Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chem Biol 12:1211–1219. doi:10.1016/j.chembiol.2005.08.015

    Article  PubMed  CAS  Google Scholar 

  18. Battistutta R, Mazzorana M, Cendron L et al (2007) The ATP-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules. ChemBioChem 8:1804–1809. doi:10.1002/cbic.200700307

    Article  PubMed  CAS  Google Scholar 

  19. Sarno S, Boldyreff B, Marin O et al (1995) Mapping the residues of protein kinase CK2 implicated in substrate recognition: mutagenesis of conserved basic residues in the alpha-subunit. Biochem Biophys Res Commun 206:171–179. doi:10.1006/bbrc.1995.1024

    Article  PubMed  CAS  Google Scholar 

  20. Sarno S, Vaglio P, Meggio F et al (1996) Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J Biol Chem 271:10595–10601. doi:10.1074/jbc.271.18.10595

    Article  PubMed  CAS  Google Scholar 

  21. Sarno S, Vaglio P, Marin O et al (1997) Mutational analysis of residues implicated in the interaction between protein kinase CK2 and peptide substrates. Biochemistry 36:11717–11724. doi:10.1021/bi9705772

    Article  PubMed  CAS  Google Scholar 

  22. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368. doi:10.1096/fj.02-0473rev

    Article  PubMed  CAS  Google Scholar 

  23. Sarno S, Vaglio P, Cesaro L et al (1999) A multifunctional network of basic residues confers unique properties to protein kinase CK2. Mol Cell Biochem 191:13–19. doi:10.1023/A:1006857016712

    Article  PubMed  CAS  Google Scholar 

  24. Esnouf RM (1997) An extensively modified version of MolScript that include greatly enhanced coloring capabilities. J Mol Graph 15:132–134. doi:10.1016/S1093-3263(97)00021-1

    Article  CAS  Google Scholar 

  25. Merrit EA, Bacon DJ (1997) Raster3D: photorealistic molecular graphics. Methods Enzymol 277:505–524. doi:10.1016/S0076-6879(97)77028-9

    Article  Google Scholar 

  26. Schomburg D, Reichelt J (1988) BRAGI: a comprehensive protein modeling program system. J Mol Graph 6:161–165. doi:10.1016/0263-7855(88)80069-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Manfred Weiss and Dr. Annette Faust for assistance at beamline X12 of the EMBL outstation in Hamburg, Germany. This work was funded by the Deutsche Forschungsgemeinschaft (grant NI 643/1-3) and by the Forskningsråd for Natur og Univers (grant 272-07-0257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Niefind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raaf, J., Issinger, OG. & Niefind, K. Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2α/DRB complex. Mol Cell Biochem 316, 15–23 (2008). https://doi.org/10.1007/s11010-008-9826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9826-1

Keywords

Navigation