Skip to main content

Advertisement

Log in

Contribution of the conservative cleavage motif to posttranslational processing of the carboxyl terminal domain of rodent Muc3

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In previous works, we showed by transient expression studies in COS-1 cells that the C-terminal domain of rat intestinal membrane mucin (rMuc3) that was cloned in the pSecTag2 plasmid (named as p20) is posttranslationally cleaved twice. One location is between the glycine and the serine within a LS1KGS2IV1V2 motif, and the other is in the 49 kDa membrane-tethered fragment at an undefined site. The sea-urchin sperm protein, enterokinase and agrin module of rMuc3 is responsible for the cleavage and association of the cleaved fragments. The present study demonstrates how the conservative cleavage motif LS1KGS2IV1V2 contributes to posttranslational processing through mutagenesis of each residue in the LS1KGS2IV1V2 motif. Mutation of S2 to alanine (p20s2/a) completely prevented cleavage. While p20k/a (in this construct the K is replaced by A) and p20s1/a (in this construct the S1 is replaced by A) (6 and 3%) showed almost the same result as the wild-type p20 transfectant (4%), 79, 39, 22, 17, and 14% of the products from p20g/a (in this construct the G is replaced by A), p20i/a (in this construct the I is replaced by A), p20l/a (in this construct the L is replaced by A), p20v2/a (in this construct the V2 is replaced by A), and p20v1/a (in this construct the V1 is replaced by A) remained uncleaved. The cleaved N-terminal fragment of the p20s1/a transfectant was 26 kDa, but the N-terminal fragments from p20, p20g/a, p20l/a, p20k/a, p20i/a, p20v1/a, and p20v2/a were 30 kDa. The S1 residue was possibly O-glycosylated, which was supported by deglycosylation with O-cocktail (a mixture of glycosidases). The N-terminal fragment of p20s1/a transfected cells was present at high levels in the spent media. Thus, the S2, G, I, L, V2, and V1 residues within the conserved cleavage motif, LS1KGS2IV1V2, are important for cleavage and contribute to the structural formation and conformational stress of the small loop between the β2 and the β3 strands. The S1 residue is possibly O-glycosylated, and mutation of S1 residue to alanine does not affect the cleavage of the LS1KGS2IV1V2 motif, but it is important for the dissociation and further release of the cleaved N-terminal fragment from the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Muc:

Mucin

SEA:

Sea-urchin sperm protein, enterokinase and agrin

References

  1. McNeer RR, Huang D, Fregien NL, Carraway KL (1998) Sialomucin complex in the rat respiratory tract: a model for its role in epithelial protection. Biochem J 330:737–744

    PubMed  CAS  Google Scholar 

  2. Baruch A, Hartmann M, Yoeli M, Adereth Y, Greenstein S, Stadler Y, Skornik Y, Zaretsky J Smorodinsky NI, Keydar I, Wreschner DH (1999) The breast cancer-associated MUC1 gene generates both a receptor and its cognate binding protein. Cancer Res 59:1552–1561

    PubMed  CAS  Google Scholar 

  3. Carraway KL, Price-Schiavi SA, Komatsu M, Idris N, Perez A, Li P, Jepson S, Zhu X, Carvajal ME, Carraway CAC (2000) Multiple facets of sialomucin complex/MUC4, a membrane mucin and erbB-2 ligand, in tumors and tissues. Front Biosci 5:d95–d107

    Article  PubMed  CAS  Google Scholar 

  4. Schroeder JA, Thompson MC, Gardner MM, Gendler SJ (2001) Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem 276:13057–13064

    Article  PubMed  CAS  Google Scholar 

  5. Smorodinsky N, Weiss M, Hartmann ML, Baruch A, Harness E, Yaakobovitz M, Keydar I, Wrescher DH (1996) Detection of a secreted MUC1/SEC protein by MUC1 isoform specific monoclonal antibodies. Biochem Biophy Res Commun 228:115–121

    Article  CAS  Google Scholar 

  6. Shirazi T, Longman RJ, Corfield AP, Probert CSJ (2000) Mucins and inflammatory bowel disease. Postgrad Med J 76:473–478

    Article  PubMed  CAS  Google Scholar 

  7. Buisine MP, Desreumaux P, Leteutre E, Copin MC, Colombel JF, Porchet N, Aubert JP (2001) Mucin gene expression in epithelial cells in Crohn’s disease. Gut 49:544–551

    Article  PubMed  CAS  Google Scholar 

  8. Khatri IA, Ho C, Specian RD, Forstner JF (2001) Characteristics of rodent intestinal mucin Muc3 and alterations in a mouse model of human cystic fibrosis. Am J Physiol Gastrointest Liver Physiol 280:G1321–G1330

    PubMed  CAS  Google Scholar 

  9. Parmley RR, Gendler SJ (1998) Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. J Clin Invest 102:1798–1806

    Article  PubMed  CAS  Google Scholar 

  10. Wang R, Khatri I, Forstner JF (2002) The carboxyl terminal domain of rodent intestinal mucin Muc3 is proteolytically cleaved in the endoplasmic reticulum to generate extracellular and membrane components. Biochem J 366:623–631

    Article  PubMed  CAS  Google Scholar 

  11. Khatri I, Wang R, Forstner JF (2003) SEA (sea-urchin sperm protein, enterokinase and agrin)-module cleavage, association of fragments and membrane targeting of rat intestinal mucin Muc3. Biochem J 372:263–270

    Article  PubMed  CAS  Google Scholar 

  12. Khatri I, Wang R, Forstner JF (2004) Evidence for a second peptide cleavage in the C-terminal domain of rodent intestinal mucin Muc3. Biochem J 378:207–212

    Article  PubMed  CAS  Google Scholar 

  13. Palmai-Pallag T, Khodabukus N, Kinarsky L, Leir S, Sherman S, Hollingsworth MA, Harris A (2005) The role of the SEA (sea urchin sperm protein, enterokinase and agrin) module in cleavage of membrane-tethered mucins. FEBS J 272:2901–2911

    Article  PubMed  CAS  Google Scholar 

  14. Gum JR Jr, Crawley SC, Hicks JW, Szymkowski DE, Kim YS (2002) MUC17, a novel membrane-tethered mucin. Biochem Biophys Res Commun 291:466–475

    Article  PubMed  CAS  Google Scholar 

  15. Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA (2001) MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem 276:18327–18336

    Article  PubMed  CAS  Google Scholar 

  16. Maeda T, Inoue M, Koshiba S, Yabuki T, Aoki M, Nunokawa E, Seki E, Matsuda T, Motoda Y, Kobayashi A, Hiroyasu F, Shirouzu M, Terada T, Hayami N, Ishizuka Y, Shinya N, Tatsuguchi A, Yoshida M, Hirota H, Matsuo Y, Tani K, Arakawa T, Carninci P, Kawai J, Hayashizaki Y, Kigawa T, Yokoyama S (2004) Solution structure of the SEA domain from the murine homologue of ovarian cancer antigen CA125 (MUC16). J Biol Chem 279:13174–13182

    Article  PubMed  CAS  Google Scholar 

  17. Abe J, Fukuzawa T, Hirose S (2002) Processing and subunit structure of Ig-Hapta, a seven-transmembrane receptor with a long N-terminal extracellular domain. J Biol Chem 277:23391–23398

    Article  PubMed  CAS  Google Scholar 

  18. Levitin F, Stern O, Weiss M, Gil-Henn C, Ziv R, Prokocimer Z, Smorodinsky NI, Rubinstein DB, Wreschner DH (2005) The MUC1 SEA module is a self-cleaving domain. J Biol Chem 280:33374–33386

    Article  PubMed  CAS  Google Scholar 

  19. Macao B, Johansson DGA, Hansson GC, Härd T (2006) Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat Struct Mol Biol 13:71–76

    Article  PubMed  CAS  Google Scholar 

  20. Khatri IA, Forstner GG, Forstner JF (1997) The carboxyl-terminal sequence of rat intestinal mucin RMuc3 contains a putative transmembrane region and two EGF-like motif. Biochem Biophys Acta 1326:7–11

    Article  PubMed  CAS  Google Scholar 

  21. Parry S, Silverman HS, McDermott K, Willis A, Hollingsworth MA, Harris A (2001) Identication of MUC1 proteolytic cleavage sites in vivo. Biochem Biophys Res Commun 283:715–720

    Article  PubMed  CAS  Google Scholar 

  22. Maryon EB, Molloy SA, Kaplan JH (2007) O-linked glycosylation at threonine 27 protects the copper transporter hCTR1 from proteolytic cleavage in mammalian cells. J Biol Chem 282:20376–20387

    Article  PubMed  CAS  Google Scholar 

  23. Sheng Z, Wu K, Carraway KL, Fregien N (1992) Molecular cloning of the transmembrane component of the 13762 mammary adenocarcinoma sialomucin complex: a new member of the epidermal growth factor superfamily. J Biol Chem 267:16341–16346

    PubMed  CAS  Google Scholar 

  24. Ligtenberg MJL, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hikens J (1992) Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem 267:6171–6177

    PubMed  CAS  Google Scholar 

  25. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  26. Stamenkovic I (2003) Extracellular matrix remodeling: the role of matrix metalloproteinase. J Pathol 200:448–446

    Article  PubMed  CAS  Google Scholar 

  27. Krem MM, Di Cera E (2002) Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci 27:67–74

    Article  PubMed  CAS  Google Scholar 

  28. Gasque P (2004) Complement: a unique innate immune sensor for danger signals. Mol Immunol 41:1089–1098

    Article  PubMed  CAS  Google Scholar 

  29. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    Article  PubMed  CAS  Google Scholar 

  30. Selkoe D, Kopan R (2003) Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 26:565–597

    Article  PubMed  CAS  Google Scholar 

  31. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a noval proteolytic mechanism of receptor activation. Cell 64:1057–1068

    Article  PubMed  CAS  Google Scholar 

  32. Lillehoj EP, Han F, Kim KC (2003) Mutagenesis of a Gly-Ser cleavage site in MUC1 inhibits ectodomain shedding. Biochem Biophys Res Commun 307:743–749

    Article  PubMed  CAS  Google Scholar 

  33. Bell SL, Xu G, Khatri IA, Wang R, Rahman S, Forstner JF (2003) N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem J 373:893–900

    Article  PubMed  CAS  Google Scholar 

  34. Parry S, Hanisch FG., Leir SH, Sutton-Smith M, Morris HR, Dell A, Harris A (2006) N-Glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology 16:623–634

    Article  PubMed  CAS  Google Scholar 

  35. Mack DR, Ahrme S, Hyde L, Wei S, Hollingsworth MA (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827–833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Foundation for Natural Sciences of the People’s Republic of China (No. 30300121, 30470401). We express our thanks to the editors in American Journal Experts for English editing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongquan Wang.

Additional information

Y. Li, Z. Peng, and Y. He contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Peng, Z., He, Y. et al. Contribution of the conservative cleavage motif to posttranslational processing of the carboxyl terminal domain of rodent Muc3. Mol Cell Biochem 313, 155–166 (2008). https://doi.org/10.1007/s11010-008-9753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9753-1

Keywords

Navigation