Skip to main content
Log in

The NADPH- and iron-dependent lipid peroxidation in human placental microsomes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) – a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and α-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walsh SW (2004) Eicosanoids in preeclampsia. Prostaglandins Leukot Essent Fatty Acids 70:223–232

    Article  PubMed  CAS  Google Scholar 

  2. Poston L, Raijmakers MT (2004) Trophoblast oxidative stress, antioxidants and pregnancy outcome–a review. Placenta 25(Suppl A):S72–S78

    Article  PubMed  CAS  Google Scholar 

  3. Serdar Z, Gur E, Colakoethullary M, Develioethlu O, Sarandol E (2003) Lipid and protein oxidation and antioxidant function in women with mild and severe preeclampsia. Arch Gynecol Obstet 268:19–25

    PubMed  CAS  Google Scholar 

  4. Sikkema JM, van Rijn BB, Franx A, Bruinse HW, de Roos R, Stroes ES, van Faassen EE (2001) Placental superoxide is increased in pre-eclampsia. Placenta 22:304–308

    Article  PubMed  CAS  Google Scholar 

  5. Walsh SW, Wang Y, Jesse R (1996) Placental production of lipid peroxides, thromboxane, and prostacyclin in preeclampsia. Hypertens Pregnancy 15:101–111

    Google Scholar 

  6. Li H, Gu B, Zhang Y, Lewis DF, Wang Y (2005) Hypoxia-induced increase in soluble Flt−1 production correlates with enhanced oxidative stress in trophoblast cells from the human placenta. Placenta 26:210–217

    Article  PubMed  CAS  Google Scholar 

  7. Coughlan MT, Vervaart PP, Permezel M, Georgiou HM, Rice GE (2004) Altered placental oxidative stress status in gestational diabetes mellitus. Placenta 25:78–84

    Article  PubMed  CAS  Google Scholar 

  8. Palan PR, Shaban DW, Martino T, Mikhail MS (2004) Lipid-soluble antioxidants and pregnancy: maternal serum levels of coenzyme Q10, α-tocopherol and γ-tocopherol in preeclampsia and normal pregnancy. Gynecol Obstet Invest 58:8–13

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y, Walsh SW (2001) Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta 22:206–212

    Article  PubMed  CAS  Google Scholar 

  10. Vanderlelie J, Venardos K, Clifton VL, Gude NM, Clarke FM, Perkins AV (2005) Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae. Placenta 26:53–58

    Article  PubMed  CAS  Google Scholar 

  11. Klimek J (1990) Cytochrome P−450 involvement in the NADPH-dependent lipid peroxidation in human placental mitochondria. Biochim Biophys Acta 1044:158–164

    PubMed  CAS  Google Scholar 

  12. Milczarek R, Klimek J, Zelewski L (2000) The effects of ascorbate and α-tocopherol on the NADPH-dependent lipid peroxidation in human placental mitochondria. Mol Cell Biochem 210:65–73

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y, Walsh SW (1998) Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta 19:581–586

    Article  PubMed  CAS  Google Scholar 

  14. Raijmakers MT, Peters WH, Steegers EA, Poston L (2004) NAD(P)H oxidase associated superoxide production in human placenta from normotensive and pre-eclamptic women. Placenta 25(Suppl A):S85–S89

    Article  PubMed  CAS  Google Scholar 

  15. Paakki P, Stockmann H, Kantola M, Wagner P, Lauper U, Huch R, Elovaara E, Kirkinen P, Pasanen M (2000) Maternal Drug Abuse and Human Term Placental Xenobiotic and Steroid Metabolizing Enzymes in Vitro. Environ Health Perspect 108:141–145

    PubMed  CAS  Google Scholar 

  16. Layne E (1957) Spectrophotometric and turbidimetric method for measuring proteins. Methods Enzymol 3:447–454

    Google Scholar 

  17. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  18. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  19. Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 93:13635–13640

    Article  PubMed  CAS  Google Scholar 

  20. Puntarulo S, Cederbaum AI (1998) Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radic Biol Med 24:1324–1330

    Article  PubMed  CAS  Google Scholar 

  21. Walsh SW, Wang Y (1993) Secretion of lipid peroxides by the human placenta. Am J Obstet Gynecol 169:1462–1466

    PubMed  CAS  Google Scholar 

  22. Klimek J (1988) The involvement of superoxide and iron ions in the NADPH-dependent lipid peroxidation in human placental mitochondria. Biochim Biophys Acta 958:31–39

    PubMed  CAS  Google Scholar 

  23. Koster JF, Slee RG (1986) Ferritin, a physiological iron donor for microsomal lipid peroxidation. FEBS Lett 199:85–88

    Article  PubMed  CAS  Google Scholar 

  24. Qian SY, Buettner GR (1999) Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic Biol Med 26:1447–1456

    Article  PubMed  CAS  Google Scholar 

  25. Ursini F, Maiorino M, Hochstein P, Ernster L (1989) Microsomal lipid peroxidation: mechanisms of initiation. The role of iron and iron chelators. Free Radic Biol Med 6:31–36

    Article  PubMed  CAS  Google Scholar 

  26. Minotti G, Aust SD (1992) Redox cycling of iron and lipid peroxidation. Lipids 27:219–226

    Article  PubMed  CAS  Google Scholar 

  27. Braughler JM, Duncan LA, Chase RL (1986) The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem 261:10282–10289

    PubMed  CAS  Google Scholar 

  28. Klimek J, Wozniak M, Szymanska G, Zelewski L (1998) Inhibitory effect of free radicals derived from organic hydroperoxide on progesterone synthesis in human term placental mitochondria. Free Radic Biol Med 24:1168–1175

    Article  PubMed  CAS  Google Scholar 

  29. Tuckey RC (2005) Progesterone synthesis by the human placenta. Placenta 26:273–281

    Article  PubMed  CAS  Google Scholar 

  30. Aikens J, Dix TA (1991) Perhydroxyl radical (HOO·) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J Biol Chem 266:15091–15098

    PubMed  CAS  Google Scholar 

  31. Kulkarni AP, Kenel MF (1987) Human placental lipid peroxidation. Some characteristics of the NADPH-supported microsomal reaction. Gen Pharmacol 18:491–496

    PubMed  CAS  Google Scholar 

  32. Schafer FQ, Qian SY, Buettner GR (2000) Iron and free radical oxidations in cell membranes. Cell Mol Biol (Noisy -le-grand) 46:657–662

    CAS  Google Scholar 

  33. Wang Y, Walsh SW, Kay HH (1992) Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am J Obstet Gynecol 167:946–949

    PubMed  CAS  Google Scholar 

  34. Walsh SW, Wang Y (1995) Trophoblast and placental villous core production of lipid peroxides, thromboxane, and prostacyclin in preeclampsia. J Clin Endocrinol Metab 80:1888–1893

    Article  PubMed  CAS  Google Scholar 

  35. Svingen BA, Buege JA, O’Neal FO, Aust SD (1979) The mechanism of NADPH-dependent lipid peroxidation. The propagation of lipid peroxidation. J Biol Chem 254:5892–5899

    PubMed  CAS  Google Scholar 

  36. Ghosh MK, Mukhopadhyay M, Chatterjee IB (1997) NADPH-initiated cytochrome P450-dependent free iron-independent microsomal lipid peroxidation: specific prevention by ascorbic acid. Mol Cell Biochem 166:35–44

    Article  PubMed  CAS  Google Scholar 

  37. Milczarek R, Klimek J, Zelewski L (2000) Melatonin inhibits NADPH-dependent lipid peroxidation in human placental mitochondria. Horm Metab Res 32:84–85

    Article  PubMed  CAS  Google Scholar 

  38. Mutlu TU, Ademoglu E, Ibrahimoglu L, Aykac TG, Uysal M (1998) Imbalance between lipid peroxidation and antioxidant status in preeclampsia. Gynecol Obstet Invest 46:37–40

    Article  Google Scholar 

  39. Jain SK, Wise R (1995) Relationship between elevated lipid peroxides, vitamin E deficiency and hypertension in preeclampsia. Mol Cell Biochem 151:33–38

    Article  PubMed  CAS  Google Scholar 

  40. Kharb S, Gulati N, Singh V, Singh GP (2000) Superoxide anion formation and glutathione levels in patients with preeclampsia. Gynecol Obstet Invest 49:28–30

    Article  PubMed  CAS  Google Scholar 

  41. Hakkola J, Pelkonen O, Pasanen M, Raunio H (1998) Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 28:35–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Professor M. M. Żydowo for critical reading and discussion of the manuscript. This work was supported by a grant from Medical University of Gdańsk, within the project W-48 and a grant from KBN, within the project ST-40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Milczarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milczarek, R., Sokolowska, E., Hallmann, A. et al. The NADPH- and iron-dependent lipid peroxidation in human placental microsomes. Mol Cell Biochem 295, 105–111 (2007). https://doi.org/10.1007/s11010-006-9279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9279-3

Keywords

Navigation