Skip to main content
Log in

The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association

  • Research
  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper, the Bahadur representation of the empirical and Bernstein polynomials estimators of the quantile function based on associated sequences are investigated. The rate of approximation depends on the rate of decay in covariances, and it converges to the optimal rate observed under independence when the covariances quickly approach zero. As an application, we establish a Berry-Esseen bound with the rate \(O(n^{-1/3})\) assuming polynomial decay of covariances. All these results are established under fairly general conditions on the underlying distributions. Additionally, we perform Monte Carlo simulations to evaluate the finite sample performance of the suggested estimators, utilizing an associated and non-mixing model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. The \(\beta \)-mixing coefficients of the strictly stationary sequence \(\left( X_n\right) _{n \in \mathbb {Z}}\) are defined, for each \(n \in \mathbb {N}\), by

    $$\begin{aligned} \begin{aligned}&\beta _n=\beta \left( \mathcal {A}_0, \mathcal {B}_n\right) , \quad \text{ where } \mathcal {A}_0=\sigma \left( X_i, i \leqslant 0\right) \text{ and } \\&\mathcal {B}_n=\sigma \left( X_i, i \geqslant n\right) . \end{aligned} \end{aligned}$$

References

  • Alvarez-Andrade S, Bouzebda S (2014) Asymptotic results for hybrids of empirical and partial sums processes. Statist Papers 55(4):1121–1143

    Article  MathSciNet  Google Scholar 

  • Alvarez-Andrade S, Bouzebda S (2014) Some nonparametric tests for change-point detection based on the \(\mathbb{P} \)-\(\mathbb{P} \) and \(\mathbb{Q} \)-\(\mathbb{Q} \) plot processes. Sequential Anal 33(3):360–399

    Article  MathSciNet  Google Scholar 

  • Alvarez-Andrade S, Bouzebda S (2019) Some selected topics for the bootstrap of the empirical and quantile processes. Theory Stoch Process 24(1):19–48

    MathSciNet  Google Scholar 

  • Aly E-EAA (1986a) Quantile-quantile plots under random censorship. J Statist Plann Inference 15(1):123–128

    Article  MathSciNet  Google Scholar 

  • Aly E-EAA (1986b) Strong approximations of the Q-Q process. J Multivariate Anal 20(1):114–128

    Article  MathSciNet  Google Scholar 

  • Andrews DW (1984) Non-strong mixing autoregressive processes. J Appl Probab 21(4):930–934

    Article  MathSciNet  Google Scholar 

  • Babu GJ, Chaubey YP (2006) Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors. Statist Probab Lett 76(9):959–969

    Article  MathSciNet  Google Scholar 

  • Babu GJ, Canty AJ, Chaubey YP (2002) Application of Bernstein polynomials for smooth estimation of a distribution and density function. J Statist Plann Inference 105(2):377–392

    Article  MathSciNet  Google Scholar 

  • Bahadur RR (1966) A note on quantiles in large samples. Ann Math Statist 37:577–580

    Article  MathSciNet  Google Scholar 

  • Beirlant J, Deheuvels P (1990) On the approximation of P-P and Q-Q plot processes by Brownian bridges. Statist Probab Lett 9(3):241–251

    Article  MathSciNet  Google Scholar 

  • Belalia M (2016) On the asymptotic properties of the Bernstein estimator of the multivariate distribution function. Statist Probab Lett 110:249–256

    Article  MathSciNet  Google Scholar 

  • Birkel T (1988a) Moment bounds for associated sequences. Ann Probab 16(3):1184–1193

    Article  MathSciNet  Google Scholar 

  • Birkel T (1988b) On the convergence rate in the central limit theorem for associated processes. Ann Probab 16(4):1685–1698

    Article  MathSciNet  Google Scholar 

  • Bouzebda S (2010) Strong approximation of the smoothed \(Q\)-\(Q\) processes. Far East J Theor Stat 31(2):169–191

    MathSciNet  Google Scholar 

  • Bouzebda S (2023) General tests of conditional independence based on empirical processes indexed by functions. Jpn J Stat Data Sci 6(1):115–177

    Article  MathSciNet  Google Scholar 

  • Bouzebda S (2023) On the weak convergence and the uniform-in-bandwidth consistency of the general conditional \(U\)-processes based on the copula representation: multivariate setting. Hacet J Math Stat 52(5):1303–1348

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Cherfi M (2012) General bootstrap for dual \(\phi \)-divergence estimates. J Probab Stat pages Art. ID 834107, 33

  • Bouzebda S, Didi S (2017) Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: asymptotic results. Comm Statist Theory Methods 46(3):1367–1406

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Didi S (2021) Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes. Rev Mat Complut 34(3):811–852

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Limnios N (2013) On general bootstrap of empirical estimator of a semi-Markov kernel with applications. J Multivariate Anal 116:52–62

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nemouchi B (2019) Central limit theorems for conditional empirical and conditional \(U\)-processes of stationary mixing sequences. Math Methods Statist 28(3):169–207

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nemouchi B (2023) Weak-convergence of empirical conditional processes and conditional \(U\)-processes involving functional mixing data. Stat Inference Stoch Process 26(1):33–88

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Zari T (2014) Strong approximation of multidimensional \(\mathbb{P} \)-\(\mathbb{P} \) plots processes by Gaussian processes with applications to statistical tests. Math Methods Statist 23(3):210–238

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Papamichail C, Limnios N (2018) On a multidimensional general bootstrap for empirical estimator of continuous-time semi-Markov kernels with applications. J Nonparametr Stat 30(1):49–86

    Article  MathSciNet  Google Scholar 

  • Bradley RC (1986) Basic properties of strong mixing conditions. In Dependence in probability and statistics (Oberwolfach, 1985), volume 11 of Progr Probab Statist pages 165–192. Birkhäuser Boston, Boston, MA

  • Bulinski A, Shashkin A (2004) Rates in the CLT for sums of dependent multiindexed random vectors. J Math Sci (N.Y.) 122(4):3343–3358

    Article  MathSciNet  Google Scholar 

  • Bulinski A, Shashkin A (2007) Limit theorems for associated random fields and related systems, volume 10 of Advanced Series on Statistical Science & Applied Probability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ

  • Bulinski A, Suquet C (2001) Normal approximation for quasi-associated random fields. Statist Probab Lett 54(2):215–226

    Article  MathSciNet  Google Scholar 

  • Chaubey YP, Sen PK (1996) On smooth estimation of survival and density functions. Statist Decisions 14(1):1–22

    MathSciNet  Google Scholar 

  • Chaubey YP, Dewan I, Li J (2021) On some smooth estimators of the quantile function for a stationary associated process. Sankhya B 83(1):S114–S139

    Article  MathSciNet  Google Scholar 

  • Chen EJ, Kelton WD (2006) Quantile and tolerance-interval estimation in simulation. European J. Oper. Res. 168(2):520–540

    Article  MathSciNet  Google Scholar 

  • Chen SX, Tang CY (2005) Nonparametric Inference of Value-at-Risk for Dependent Financial Returns. J Financ Economet 3(2):227–255

    Article  Google Scholar 

  • Csáki E, Csörgő M (2015) On Bahadur-Kiefer type processes for sums and renewals in dependent cases. Mathematical statistics and limit theorems. Springer, Cham, pp 93–103

    Chapter  Google Scholar 

  • Csörgő M (1983) Quantile processes with statistical applications, volume 42 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  • Csörgő M, Kulik R (2008) Reduction principles for quantile and Bahadur-Kiefer processes of long-range dependent linear sequences. Probab Theory Related Fields 142(3–4):339–366

    Article  MathSciNet  Google Scholar 

  • Csörgő M, Zitikis R (2002) On the general Bahadur-Kiefer, quantile, and Vervaat processes: old and new. In Limit theorems in probability and statistics, Vol. I (Balatonlelle, 1999), pages 389–426. János Bolyai Math. Soc., Budapest

  • Dedecker J, Prieur C (2007) An empirical central limit theorem for dependent sequences. Stochastic Process Appl 117(1):121–142

    Article  MathSciNet  Google Scholar 

  • Deheuvels P (1997) Strong laws for local quantile processes. Ann Probab 25(4):2007–2054

    Article  MathSciNet  Google Scholar 

  • Deheuvels P, Einmahl JHJ (1992) Approximations and two-sample tests based on \(P\)-\(P\) and \(Q\)-\(Q\) plots of the Kaplan-Meier estimators of lifetime distributions. J Multivariate Anal 43(2):200–217

    Article  MathSciNet  Google Scholar 

  • Deheuvels P, Mason DM (1990) Bahadur-Kiefer-type processes. Ann Probab 18(2):669–697

    Article  MathSciNet  Google Scholar 

  • Deheuvels P, Mason DM (1992) Functional laws of the iterated logarithm for the increments of empirical and quantile processes. Ann Probab 20(3):1248–1287

    Article  MathSciNet  Google Scholar 

  • Demichev VP (2014) An optimal estimate for the covariance of indicator functions of associated random variables. Theory Probab Appl 58(4):675–683

    Article  MathSciNet  Google Scholar 

  • Doksum K (1974) Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann Statist 2:267–277

    Article  MathSciNet  Google Scholar 

  • Doksum KA, Sievers GL (1976) Plotting with confidence: graphical comparisons of two populations. Biometrika 63(3):421–434

    Article  MathSciNet  Google Scholar 

  • Douge L (2022) A Berry-Esseen theorem for sample quantiles under association. Comm Statist Theory Methods 51(18):6515–6528

    Article  MathSciNet  Google Scholar 

  • Doukhan P (1994) Mixing, vol 85. Lecture Notes in Statistics. Springer-Verlag, New York, Properties and examples

  • Doukhan P (2018) Stochastic models for time series, volume 80 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Cham

  • Doukhan P, Louhichi S (1999) A new weak dependence condition and applications to moment inequalities. Stochastic Process Appl 84(2):313–342

    Article  MathSciNet  Google Scholar 

  • Ekisheva SV (2001) Limit theorems for sample quantiles of associated random sequences. Fundam Prikl Mat 7(3):721–734

    MathSciNet  Google Scholar 

  • Esary JD, Proschan F, Walkup DW (1967) Association of random variables, with applications. Ann Math Statist 38:1466–1474

    Article  MathSciNet  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications. Vol. II. John Wiley & Sons, Inc., New York-London-Sydney, second edition

  • Fisher NI (1983) Graphical methods in nonparametric statistics: a review and annotated bibliography. Internat Statist Rev 51(1):25–58

    Article  MathSciNet  Google Scholar 

  • Gawronski W (1985) Strong laws for density estimators of Bernstein type. Period Math Hungar 16(1):23–43

    Article  MathSciNet  Google Scholar 

  • Gawronski W, Stadtmüller U (1980) On density estimation by means of Poisson’s distribution. Scand J Statist 7(2):90–94

    MathSciNet  Google Scholar 

  • Ghosh JK (1971) A new proof of the Bahadur representation of quantiles and an application. Ann Math Statist 42:1957–1961

    Article  MathSciNet  Google Scholar 

  • Gill RD (1989) Non- and semi-parametric maximum likelihood estimators and the von Mises method. I Scand J Statist 16(2), 97–128. With a discussion by J. A. Wellner and J. Præstgaard and a reply by the author

  • Harris TE (1960) A lower bound for the critical probability in a certain percolation process. Proc Cambridge Philos Soc 56:13–20

    Article  MathSciNet  Google Scholar 

  • Henriques C, Oliveira PE (2006) Convergence rates for the estimation of two-dimensional distribution functions under association and estimation of the covariance of the limit empirical process. J Nonparametr Stat 18(2):119–128

    Article  MathSciNet  Google Scholar 

  • Hesse CH (1990) A Bahadur-type representation for empirical quantiles of a large class of stationary, possibly infinite-variance, linear processes. Ann Statist 18(3):1188–1202

    Article  MathSciNet  Google Scholar 

  • Ho H-C, Hsing T (1996) On the asymptotic expansion of the empirical process of long-memory moving averages. Ann Statist 24(3):992–1024

    Article  MathSciNet  Google Scholar 

  • Hwang E (2021) Weak convergence for stationary bootstrap empirical processes of associated sequences. J Korean Math Soc 58(1):237–264

    MathSciNet  Google Scholar 

  • Joag-Dev K, Proschan F (1983) Negative association of random variables, with applications. Ann Statist 11(1):286–295

    Article  MathSciNet  Google Scholar 

  • Kakizawa Y (2004) Bernstein polynomial probability density estimation. J Nonparametr Stat 16(5):709–729

    Article  MathSciNet  Google Scholar 

  • Kevei P, Mason DM (2018) Bahadur-Kiefer representations for time dependent quantile processes. Period Math Hungar 76(1):95–113

    Article  MathSciNet  Google Scholar 

  • Kiefer J (1967) On Bahadur’s representation of sample quantiles. Ann Math Statist 38:1323–1342

    Article  MathSciNet  Google Scholar 

  • Kiefer J (1970a) Deviations between the sample quantile process and the sample \({\rm df}\). In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969), pages 299–319. Cambridge Univ. Press, London-New York

  • Kiefer J (1970b) Old and new methods for studying order statistics and sample quantiles. In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969), pages 349–357. Cambridge Univ. Press, London-New York

  • Kong E, Xia Y (2017) Uniform Bahadur representation for nonparametric censored quantile regression: a redistribution-of-mass approach. Economet Theor 33(1):242–261

    Article  MathSciNet  Google Scholar 

  • Kosorok MR (2008) Introduction to empirical processes and semiparametric inference. Springer Series in Statistics, Springer, New York

    Book  Google Scholar 

  • Lahiri SN, Sun S (2009) A Berry-Esseen theorem for sample quantiles under weak dependence. Ann Appl Probab 19(1):108–126

    Article  MathSciNet  Google Scholar 

  • Leblanc A (2012) On estimating distribution functions using Bernstein polynomials. Ann Inst Statist Math 64(5):919–943

    Article  MathSciNet  Google Scholar 

  • Lehmann EL (1966) Some concepts of dependence. Ann Math Statist 37:1137–1153

    Article  MathSciNet  Google Scholar 

  • Lorentz GG (1986) Bernstein polynomials. Chelsea Publishing Co., New York, second edition

  • Louhichi S (2000) Convergence rates in the strong law for associated random variables. Probab Math Statist 20(1):203–214

    MathSciNet  Google Scholar 

  • Louhichi S (2000) Weak convergence for empirical processes of associated sequences. Ann Inst H Poincaré Probab Statist 36(5):547–567

    Article  MathSciNet  Google Scholar 

  • Louhichi S (2001) Rates of convergence in the CLT for some weakly dependent random variables. Teor Veroyatnost i Primenen 46(2):345–364

    Article  MathSciNet  Google Scholar 

  • Móricz F (1983) A general moment inequality for the maximum of the rectangular partial sums of multiple series. Acta Math Hungar 41(3–4):337–346

    Article  MathSciNet  Google Scholar 

  • Newman CM (1984) Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Inequalities in statistics and probability (Lincoln, Neb., 1982), volume 5 of IMS Lecture Notes Monogr Ser pages 127–140. Inst Math Statist, Hayward, CA

  • Newman CM, Wright AL (1981) An invariance principle for certain dependent sequences. Ann Probab 9(4):671–675

    Article  MathSciNet  Google Scholar 

  • Pham TD, Tran LT (1985) Some mixing properties of time series models. Stochastic Process Appl 19(2):297–303

    Article  MathSciNet  Google Scholar 

  • Pitt LD (1982) Positively correlated normal variables are associated. Ann Probab 10(2):496–499

    Article  MathSciNet  Google Scholar 

  • Prakasa Rao BLS (2005) Estimation of distribution and density functions by generalized Bernstein polynomials. Indian J Pure Appl Math 36(2):63–88

    MathSciNet  Google Scholar 

  • Sen PK (1972) On the Bahadur representation of sample quantiles for sequences of \(\phi \)-mixing random variables. J Multivariate Anal 2:77–95

    Article  MathSciNet  Google Scholar 

  • Sen PK, Ghosh M (1971) On bounded length sequential confidence intervals based on one-sample rank order statistics. Ann Math Statist 42:189–203

    Article  MathSciNet  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York

  • Shao Q-M, Yu H (1996) Weak convergence for weighted empirical processes of dependent sequences. Ann Probab 24(4):2098–2127

    Article  MathSciNet  Google Scholar 

  • Shashkin AP (2002) Quasi-associatedness of a Gaussian system of random vectors. Uspekhi Mat Nauk 57(348)(6):199–200

    MathSciNet  Google Scholar 

  • Shorack GR, Wellner JA (1986) Empirical processes with applications to statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York

  • Stadmüller U (1983) Asymptotic distributions of smoothed histograms. Metrika 30(3):145–158

    Article  MathSciNet  Google Scholar 

  • Sun S (2006) The Bahadur representation for sample quantiles under weak dependence. Statist Probab Lett 76(12):1238–1244

    Article  MathSciNet  Google Scholar 

  • Tenbusch A (1994) Two-dimensional Bernstein polynomial density estimators. Metrika 41(3–4):233–253

    Article  MathSciNet  Google Scholar 

  • Tenbusch A (1997) Nonparametric curve estimation with Bernstein estimates. Metrika 45(1):1–30

    Article  MathSciNet  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York. With applications to statistics

  • Vitale RA (1975) A bernstein polynomial approach to density function estimation. In Statistical inference and related topics, pages 87–99. Elsevier

  • Wang L, Lu D (2023) Application of Bernstein polynomials on estimating a distribution and density function in a triangular array. Methodol Comput Appl Probab 25(2), Paper No. 56, 14

  • Wang Y, Yang W, Hu S (2016) The Bahadur representation of sample quantiles for weakly dependent sequences. Stochastics 88(3):428–436

    Article  MathSciNet  Google Scholar 

  • Wilk MB, Gnanadesikan R (1968) Probability plotting methods for the analysis for the analysis of data. Biometrika 55(1):1–17

    Google Scholar 

  • Wu WB (2005) On the Bahadur representation of sample quantiles for dependent sequences. Ann Statist 33(4):1934–1963

    Article  MathSciNet  Google Scholar 

  • Wu Y, Yu W, Wang X (2021) The Bahadur representation of sample quantiles for \(\varphi \)-mixing random variables and its application. Statistics 55(2):426–444

    Article  MathSciNet  Google Scholar 

  • Xing G, Yang S (2019) On the Bahadur representation of sample quantiles for \(\psi \)-mixing sequences and its application. Comm Statist Theory Methods 48(5):1060–1072

    Article  MathSciNet  Google Scholar 

  • Xu S, Ge L, Miao Y (2013) On the Bahadur representation of sample quantiles and order statistics for NA sequences. J Korean Statist Soc 42(1):1–7

    Article  MathSciNet  Google Scholar 

  • Yang W, Hu S, Wang X, Ling N (2012) The Berry-Esséen type bound of sample quantiles for strong mixing sequence. J Statist Plann Inference 142(3):660–672

    Article  MathSciNet  Google Scholar 

  • Yang W, Liu T, Wang X, Hu S (2014) On the bahadur representation of sample quantiles for widely orthant dependent sequences. Filomat 28(7):1333–1343

    Article  MathSciNet  Google Scholar 

  • Yang W-Z, Hu S-H, Wang X-J (2019) The Bahadur representation for sample quantiles under dependent sequence. Acta Math Appl Sin Engl Ser 35(3):521–531

    Article  MathSciNet  Google Scholar 

  • Yoshihara K-I (1995) The Bahadur representation of sample quantiles for sequences of strongly mixing random variables. Statist Probab Lett 24(4):299–304

    Article  MathSciNet  Google Scholar 

  • Yu H (1993) A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences. Probab Theory Related Fields 95(3):357–370

    Article  MathSciNet  Google Scholar 

  • Zhang Q, Yang W, Hu S (2014) On Bahadur representation for sample quantiles under \(\alpha \)-mixing sequence. Statist Papers 55(2):285–299

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Editor-in-Chief, an Associate-Editor, and two referees for their extremely helpful remarks, which resulted in a substantial improvement of the original form of the work and a presentation that was more sharply focused.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

N.B., S.B. and L.D.: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Original Draft, Writing - Review & Editing. All authors contributed equally to this work.

Corresponding author

Correspondence to Salim Bouzebda.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix contains supplementary lemmas that are essential parts of providing a more comprehensive understanding of the paper.

Lemma 3.5

(Birkel (1988b), Lemma 3.1) Let A and B be finite sets and let \((X_j)_{j\in A\cup B}\) be associated random variables. Then for all real-valued partially differentiable functions \(g(\cdot )\), \(h(\cdot )\) with bounded partial derivatives, there holds

$$\begin{aligned} \Big | \textrm{Cov}\big ( g\big ( (X_i)_{i\in A}\big ), h\big ( (X_j)_{j\in B}\big ) \big ) \Big |\le \sum _{i\in A}\sum _{j\in B} \left\| \frac{ \partial g}{\partial x_i} \right\| _{\infty }\left\| \frac{ \partial h}{\partial x_j}\right\| _{\infty } \textrm{Cov}(X_i,Y_j). \end{aligned}$$

Lemma 3.7

(Shao and Yu (1996), Lemma 5.1) Let X and Y be associated random variables with a common uniform distribution over [0, 1]. Then for any \(0\le s < t \le 1\),

$$\begin{aligned} \Big |\textrm{Cov}\big (\mathbbm {1}_{\{s<X\le t\}}, \mathbbm {1}_{\{s<Y\le t\}}\big )\Big | \le 4 (t-s)^{\frac{1}{3}} \big (\textrm{Cov}(X,Y)\big )^{\frac{1}{3}}. \end{aligned}$$

Lemma 7.1

(Shao and Yu (1996), (5.27)) Let \(q>2\). Let \((U_i)_{i\ge 1}\) be a stationary associated sequence of uniform [0, 1] random variables and let

$$\begin{aligned} Z_i=\mathbbm {1}_{\{s<U_i\le t\}}-(t-s),~ \text{ for } ~ 0\le s<t\le 1. \end{aligned}$$

If \(2 n^{\frac{-q+1+\eta }{q+2}}<t-s\) and \(\textrm{Cov}(U_1,U_n)=O(n^{-b})\) for some \( b>q-1\), then, for any \(\eta >0\), there exists some positive constant \(K_{\eta }\) for which

$$\begin{aligned} \textbf{E}\left| \sum _{i=1}^{n} Z_i\right| ^{q}\le K_{\eta } \left\{ n^{\frac{q(3+\eta )}{q+2}}+\left( n\sum _{i=1}^{n} \big |\textbf{E Z}_1 Z_i\big |\right) ^{\frac{q}{2}}\right\} . \end{aligned}$$

Lemma 7.2

(Newman and Wright (1981), (12)) Suppose that \(X_1,\ldots , X_m\) are associated, mean zero, finite variance, random variables. Then for any real number \(\lambda \)

$$\begin{aligned} \textbf{P}\Big (\max \big \{|S_1|,\ldots ,|S_m|\big \}\ge \lambda s_m\Big )\le 2 \textbf{P}\Big (|S_m|\ge (\lambda - \sqrt{2}) s_m\Big ), \end{aligned}$$

where

$$\begin{aligned} S_m=\sum _{i=1}^{m} X_i \end{aligned}$$

and \(s_m^2=\textbf{E S}_m^2\).

Lemma 7.3

(Birkel (1988a), Theorem 2) Let \((X_i)_{i\in \mathbb {N}}\) be a sequence of random variables satisfying \(\textbf{E X}_i=0\) and \(|X_i|\le C <\infty \) for \(i\in \mathbb {N}\). Assume for some \(r>2\)

$$\begin{aligned}\ \sup _{k\in \mathbb {N} } \sum _{i: |i-k|\ge n}\textrm{Cov}(X_{i}, X_{k})= O\left( n^{-\frac{r-2}{2}}\right) \quad n\in \mathbb {N}. \end{aligned}$$

Then there is a constant B not depending on n, such that for all \(n \ge 1\),

$$\begin{aligned} \sup _{m\in \mathbb {N} }\textbf{E}\left| \sum _{i=m+1}^{m +n } X_i \right| ^r \le B n^{\frac{r}{2}}. \end{aligned}$$

Lemma 7.4

(Móricz (1983), Corollary 1) Let \(\alpha >1\), \(\gamma \ge 1\) and \(d\ge 1\). Let \(\{\xi _i, \, i\in \mathbb {N}^{d}\}\) be real random fields having finite moments of order \(\gamma \). Suppose that there exists a nonnegative and superadditive function \(g(R_{b,p})\) of the rectangle

$$\begin{aligned} R_{b,p}=\bigg \{(i_1,\ldots ,i_d)\in \mathbb {N}^{d}: b_j+1\le i_j \le b_j+p_j, \, j=1,\ldots , d\bigg \}, \end{aligned}$$

where \(b_j\in \mathbb {N}\) and \(1\le p_j\le m_j\), \(j=1,\ldots , d\), such that for every \(R_{b,p}\) we have

$$\begin{aligned} \textbf{E}\left| \sum _{i\in R_{b,p}} \xi _i\right| ^{\gamma }\le \big (g(R_{b,p}))^{\alpha }. \end{aligned}$$

Then for every \(R_{b,p}\) we have

$$\begin{aligned} \textbf{E}\left( \max _{1\le p_1 \le m_1}\ldots \max _{1\le p_d\le m_d}\left| \sum _{i_1=b_1+1}^{b_1+p_1}\ldots \sum _{i_d=b_d+1}^{b_d+p_d}\xi _{i_1,\ldots ,i_d}\right| \right) ^{\gamma }\le C(\alpha ,\gamma ,d) \big (g(R_{b,m})\big )^{\alpha }, \end{aligned}$$

where

$$\begin{aligned} C(\alpha ,\gamma ,d)=\left( \frac{5}{2}\right) ^d \left( 1-2^{(1-\alpha )\gamma }\right) ^{-d\gamma }. \end{aligned}$$

Lemma 8.1

(Louhichi (2001), Theorem 1) Let \((X_i)_{i\in \mathbb {N}}\) be a stationary sequence of centered and bounded associated random variables with a second finite moment such that

  1. i)
    $$\begin{aligned} \exists n_0 \in \mathbb {N}^{*}\quad \text {such that}\quad \inf _{n\ge n_0,\, 1\le k<n} \frac{\displaystyle \textrm{Var}\left( \sum _{i=1}^{n} X_i\right) -\textrm{Var}\left( \sum _{i=1}^{k} X_i\right) }{\displaystyle n-k}>0; \end{aligned}$$
  2. ii)
    $$\begin{aligned}\ \sum _{i=1}^{\infty } i^{\delta }\textrm{Cov}(X_1, X_{1+i})<\infty , \quad 0<\delta \le 1. \end{aligned}$$

Then, for any \(n\ge n_0\), we have

$$\begin{aligned} \sup _{x\in \mathbb {R}} \left| \textbf{P}\left( \frac{\displaystyle \sum _{i=1}^{n} X_i}{\sqrt{\textrm{Var}\left( \displaystyle \sum _{i=1}^{n} X_i\right) }}\le x\right) -\Phi (x)\right| = O( n^{-\delta /3}). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrahou, NE., Bouzebda, S. & Douge, L. The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association. Methodol Comput Appl Probab 26, 17 (2024). https://doi.org/10.1007/s11009-024-10086-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11009-024-10086-x

Keywords

Mathematical Subject Classification

Navigation