Skip to main content
Log in

Stochastic Differential Games on Optimal Investment and Reinsurance Strategy with Delay Under the CEV Model

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper, supposing that the price process of the risky asset is described by a CEV stochastic volatility model, we investigate a stochastic differential investment and proportional reinsurance game problem with delay between two competing insurers. Each insurer’s risk process is described by the diffusion approximated process of the classical Cramér-Lundberg model. Each insurer can purchase the proportional reinsurance to mitigate their claim risks; and can invest in one risk-free asset and one risky asset whose price dynamics follows the CEV model. The main objective of each insurer is to maximize the utility of his terminal surplus relative to that of his competitor. For the representative cases of the mean-variance utility and exponential utility, we derive the explicit equilibrium reinsurance and investment strategies by applying the techniques of differential game theory and stochastic control theory. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies. Numerical simulation results indicate that: whether delay information and the elasticity parameter is considered or not will greatly affect the final equilibrium reinsurance strategy and optimal investment strategy. The more value of wealth at an earlier time is considered, the insurer will be more cautious and rational in their investment; however, the investment strategy of the insurer with the relative performance concern is riskier than that without the concern; meanwhile, the elasticity parameter will significantly affect the investment strategy of the insurer, and its influence trend varies with the price of risky assets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility Statement

All data generated during the current study are available from the corresponding author on reasonable request.

References

  • Bai L, Guo J (2008) Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insurance Math Econom 42(3):968–975

  • Bai Y, Zhou Z, Xiao H, Gao R (2021) A Stackelberg reinsurance-investment game with asymmetric information and delay. Optimization 70(10):2131–2168

    Article  MathSciNet  MATH  Google Scholar 

  • Bai Y, Zhou Z, Xiao H, Gao R, Zhong F (2022) A hybrid stochastic differential reinsurance and investment game with bounded memory. Eur J Oper Res 296(2):717–737

    Article  MathSciNet  MATH  Google Scholar 

  • Bäuerle N, Leimcke G (2021) Robust optimal investment and reinsurance problems with learning. Scand Actuar J 2021(2):82–109

    Article  MathSciNet  MATH  Google Scholar 

  • Bensoussan A, Siu CC, Yam SCP, Yang H (2014) A class of non-zero-sum stochastic differential investment and reinsurance games. Automatica 50(8):2025–2037

    Article  MathSciNet  MATH  Google Scholar 

  • Björk T, Murgoci A (2010) A general theory of Markovian time inconsistent stochastic control problems. SSRN Electron J 1694759

  • Browne S (2000) Stochastic differential portfolio games. J Appl Probab 37(1):126–147

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Shen Y (2019) Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework. Insurance Math Econom 88:120–137

  • Chen Z, Yang P (2020) Robust optimal reinsurance-investment strategy with price jumps and correlated claims. Insurance Math Econom 92:27–46

  • Chunxiang A, Lai Y, Shao Y (2018) Optimal excess-of-loss reinsurance and investment problem with delay and jump-diffusion risk process under the CEV model. J Comput Appl Math 342:317–336

    Article  MathSciNet  MATH  Google Scholar 

  • Chunxiang A, Li Z (2015) Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model. Insurance Math Econom 61:181–196

  • Deng C, Bian W, Wu B (2020) Optimal reinsurance and investment problem with default risk and bounded memory. Int J Control 93(12):2982–2994

    Article  MathSciNet  MATH  Google Scholar 

  • Deng C, Zeng X, Zhu H (2018) Non-zero-sum stochastic differential reinsurance and investment games with default risk. Eur J Oper Res 264(3):1144–1158

    Article  MathSciNet  MATH  Google Scholar 

  • Gu A, Guo X, Li Z, Zeng Y (2012) Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model. Insurance Math Econom 51(3):674–684

  • Gu A, Viens FG, Yao H (2018) Optimal robust reinsurance-investment strategies for insurers with mean reversion and mispricing. Insurance Math Econom 80:93–109

  • He Y, Xiang K, Chen P, Wu C (2021) Optimal investment strategy with constant absolute risk aversion utility under an extended CEV model. Optimization. https://doi.org/10.1080/02331934.2021.1954645

    Article  MATH  Google Scholar 

  • Huang Y, Yang X, Zhou J (2016) Optimal investment and proportional reinsurance for a jump-diffusion risk model with constrained control variables. J Comput Appl Math 296:443–461

    Article  MathSciNet  MATH  Google Scholar 

  • Jin Z, Yin G, Wu F (2013) Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods. Insurance Math Econom 53(3):733–746

  • Li D, Rong X, Zhao H (2015) Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model. J Comput Appl Math 283:142–162

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Rong X, Zhao H (2016) The optimal investment problem for an insurer and a reinsurer under the constant elasticity of variance model. IMA J Manag Math 27(2):255–280

    Article  MathSciNet  MATH  Google Scholar 

  • Lin X, Li Y (2011) Optimal reinsurance and investment for a jump diffusion risk process under the CEV model. North American Actuarial Journal 15(3):417–431

    Article  MathSciNet  MATH  Google Scholar 

  • Lin X, Qian Y (2016) Time-consistent mean-variance reinsurance-investment strategy for insurers under CEV model. Scand Actuar J 2016(7):646–671

    Article  MathSciNet  MATH  Google Scholar 

  • Liu B, Meng H, Zhou M (2021) Optimal investment and reinsurance policies for an insurer with ambiguity aversion. N Am J Econ Financ 55:101303

  • Liu J (2007) Portfolio selection in stochastic environments. Rev Financ Stud 20(1):1–39

    Article  Google Scholar 

  • Liu J, Yiu K-FC, Siu TK (2014) Optimal investment of an insurer with regime-switching and risk constraint. Scand Actuar J 2014(7):583–601

    Article  MathSciNet  MATH  Google Scholar 

  • Meng H, Li S, Jin Z (2015) A reinsurance game between two insurance companies with nonlinear risk processes. Insurance Math Econom 62:91–97

  • Merton R (1969) Lifetime portfolio selection under uncertainty: The continuous-time case. Rev Econ Stat 247–257

  • Merton R (1971) Optimal consumption and portfolio rules in a continuous-time model. J Econ Theory 3(4):373–413

    Article  MathSciNet  MATH  Google Scholar 

  • Shen Y, Meng Q, Shi P (2014) Maximum principle for mean-field jump-diffusion stochastic delay differential equations and its application to finance. Automatica 50(6):1565–1579

    Article  MathSciNet  MATH  Google Scholar 

  • Shen Y, Zeng Y (2014) Optimal investment-reinsurance with delay for mean-variance insurers: A maximum principle approach. Insurance Math Econom 57:1–12

  • Shen Y, Zeng Y (2015) Optimal investment-reinsurance strategy for mean–variance insurers with square-root factor process. Insurance Math Econom 62:118–137

  • Shen Y, Zhang X, Siu TK (2014) Mean-variance portfolio selection under a constant elasticity of variance model. Oper Res Lett 42(5):337–342

    Article  MathSciNet  MATH  Google Scholar 

  • Taksar M, Zeng X (2011) Optimal non-proportional reinsurance control and stochastic differential games. Insurance Math Econom 48(1):64–71

  • Wang N, Zhang N, Jin Z, Qian L (2021) Reinsurance-investment game between two mean-variance insurers under model uncertainty. J Comput Appl Math 382

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Rong X, Zhao H (2019) Optimal time-consistent reinsurance-investment strategy with delay for an insurer under a defaultable market. J Math Anal Appl 474(2):1267–1288

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Rong X, Zhao H (2018) Optimal investment strategies for an insurer and a reinsurer with a jump diffusion risk process under the CEV model. J Comput Appl Math 328:414–431

    Article  MathSciNet  MATH  Google Scholar 

  • Xu L, Zhang L, Yao D (2017) Optimal investment and reinsurance for an insurer under Markov-modulated financial market. Insurance Math Econom 74:7–19

  • Yang L, Zhang C, Zhu H (2022) Robust stochastic Stackelberg differential reinsurance and investment games for an insurer and a reinsurer with delay. Methodol Comput Appl Probab 24(1):361–384

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng X (2010) A stochastic differential reinsurance game. J Appl Probab 47(2):335–349

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Q, Chen P (2018) Time-consistent mean-variance proportional reinsurance and investment problem in a defaultable market. Optimization 67(5):683–699

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Q, Chen P (2020) Optimal reinsurance and investment strategy for an insurer in a model with delay and jumps. Methodol Comput Appl Probab 22(2):777–801

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao H, Weng C, Shen Y, Zeng Y (2017) Time-consistent investment-reinsurance strategies towards joint interests of the insurer and the reinsurer under CEV models. Science China-Mathematics 60(2):317–344

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng X, Zhou J, Sun Z (2016) Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model. Insurance Math Econom 67:77–87

  • Zhou Z, Bai Y, Xiao H, Chen X (2021) A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization 17(2):909–936

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H, Cao M, Zhang C (2019) Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model. Financ Res Lett 30:280–291

    Article  Google Scholar 

  • Zhu H, Cao M, Zhu Y (2021) Non-zero-sum reinsurance and investment game between two mean-variance insurers under the CEV model. Optimization 70(12):2579–2606

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu J, Guan G, Li S (2020) Time-consistent non-zero-sum stochastic differential reinsurance and investment game under default and volatility risks. J Comput Appl Math 374

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No.72171056), National Social Science Foundation of China (No.21FJYB025), Guangdong  Basic and Applied Basic Research Foundation (No. 2023A1515012335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huainian Zhu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 2.  To solve (19)–(22), we try to conjecture the solutions in the following forms

$$\begin{aligned} \left\{ \begin{array}{l} W_i(t,s,\hat{x}_i,y_i,y_j) = A^i(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) + \frac{B^i(t) + C^i(t,s)}{\gamma _i}, \\ g_i(t,s,\hat{x}_i,y_i,y_j) = F^i(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) + \frac{G^i(t) + H^i(t,s)}{\gamma _i} \end{array}\right. \end{aligned}$$
(48)

with the boundary conditions \(A^i(T) = F^i(T) = 1\), \(B^i(T) = G^i(T) = 0\), and \(C^i(t,s) = H^i(t,s) = 0\). Substituting (48) with its partial derivatives into (19) and (21), we get

$$\begin{aligned} \begin{aligned} \sup \limits _{\pi _i \in \Pi _i}&\left\{ A_{it}(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) + \frac{1}{\gamma _i}B_{it}(t) + \frac{1}{\gamma _i}C_{it}(t,s) + \frac{1}{\gamma _i}\mu sC_{is}(t,s)\right. \\&+ \bigg [\beta _ix_i - \kappa _i\beta _jx_j + \tilde{\tau }_iy_i - \kappa _i\tilde{\tau }_jy_j + \varphi _iz_i - \kappa _i\varphi _jz_j + a_i\varsigma _i - \kappa _ia_j\varsigma _j\bigg . \\&\left. + a_i\theta _iq_i(t) - \kappa _ia_j\theta _jq_j^*(t) + (\mu - r)\left( u_i(t) - \kappa _iu_j^*(t)\right) \right] A_i(t) \\&- \frac{\gamma _i}{2}\left[ \sigma ^2s^{2k}u_i^2(t) - 2\sigma ^2s^{2k}\kappa _iu_i(t)u_j^*(t) + \sigma ^2s^{2k}\kappa _i^2u_j^{*2}(t)\right. \\&\left. + b_i^2q_i^2(t) - 2\rho \kappa _ib_ib_jq_i(t)q_j^*(t) + \kappa _i^2b_j^2q_j^{*2}(t)\right] F_i^2(t)\\&- \sigma ^2s^{2k + 1}\left[ u_i(t) - \kappa _iu_j^*(t)\right] F_i(t) \cdot H_{is}(t,s) + \frac{1}{2\gamma _i}\sigma ^2s^{2k + 2}\left[ C_{iss}(t,s) - H_{is}^2(t,s)\right] \\&\left. + \omega _i\left( x_i - \delta _iy_i - \mathrm{{e}}^{-\delta _ih_i}z_i \right) A_i(t) - \kappa _i\omega _j\left( x_j - \delta _jy_j - \mathrm{{e}}^{-\delta _jh_j}z_j\right) A_i(t)\right\} = 0 \end{aligned} \end{aligned}$$
(49)

and

$$\begin{aligned} \begin{aligned}&F_{it}(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) + \frac{1}{\gamma _i}G_{it}(t) + \frac{1}{\gamma _i}H_{it}(t,s) + \frac{1}{\gamma _i}\mu sH_{is}(t,s) \\&+ \bigg [\beta _ix_i - \kappa _i\beta _jx_j + \tilde{\tau }_iy_i - \kappa _i\tilde{\tau }_jy_j + \varphi _iz_i - \kappa _i\varphi _jz_j + a_i\varsigma _i - \kappa _ia_j\varsigma _j \bigg . \\&\left. + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t) + (\mu - r)\left( u_i^*(t) - \kappa _iu_j^*(t)\right) \right] F_i(t) \\&+ \frac{1}{2\gamma _i}\sigma ^2s^{2k + 2}H_{iss}(t,s) + \omega _i\left( x_i - \delta _iy_i - \mathrm{{e}}^{-\delta _ih_i}z_i\right) F_i(t) - \kappa _i\omega _j\left( x_j - \delta _jy_j - \mathrm{{e}}^{-\delta _jh_j}z_j\right) F_i(t) = 0. \end{aligned} \end{aligned}$$
(50)

By differentiating (49) with respect to \(q_i\) and \(u_i\), we obtain

$$\begin{aligned} \left\{ {\begin{array}{l} q_i^*(t) = \frac{\rho \kappa _ib_j}{b_i}q_j^*(t) + \frac{a_i\theta _iA_i(t)}{b_i^2\gamma _iF_i^2(t)}, \\ u_i^*(t) = \kappa _iu_j^*(t) + \frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{\sigma ^2s^{2k}\gamma _iF_i^2(t)}. \\ \end{array}}\right. \end{aligned}$$
(51)

Substituting (51) back into (49) and (50), and conditionally on \(\varphi _i =\omega _i\mathrm {e}^{-\delta _ih_i}\), the following equations hold:

$$\begin{aligned} \begin{aligned}&A_{it}(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) + \frac{1}{\gamma _i}B_{it}(t) + \frac{1}{\gamma _i}C_{it}(t,s) + \frac{1}{\gamma _i}\mu sC_{is}(t,s) \\&+ \bigg [\beta _ix_i - \kappa _i\beta _jx_j + \tilde{\tau }_iy_i - \kappa _i\tilde{\tau }_jy_j + a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t) \bigg . \\&\left. + (\mu - r)\frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{\sigma ^2s^{2k}\gamma _iF_i^2(t)}\right] A_i(t) - \frac{\gamma _i}{2}\left[ \sigma ^2s^{2k}\left( \frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{\sigma ^2s^{2k}\gamma _iF_i^2(t)}\right) ^2 \right. \\&\left. + b_i^2q_i^{*2}(t) - 2\rho \kappa _ib_ib_jq_i^*(t)q_j^*(t) + \kappa _i^2b_j^2q_j^{*2}(t)\right] F_i^2(t) - \frac{1}{\gamma _i}\cdot s\frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{F_i(t)}H_{is}(t,s) \\&+ \frac{1}{2\gamma _i}\sigma ^2s^{2k + 2}\left[ C_{iss}(t,s) - H_{is}^2(t,s)\right] + \omega _i(x_i - \delta _iy_i)A_i(t) - \kappa _i\omega _j(x_j - \delta _jy_j)A_i(t) = 0, \end{aligned} \end{aligned}$$
(52)

and

$$\begin{aligned} \begin{aligned}&F_{it}(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) + \frac{1}{\gamma _i}G_{it}(t) + \frac{1}{\gamma _i}H_{it}(t,s) + \frac{1}{\gamma _i}\mu sH_{is}(t,s) \\&+ \bigg [\beta _ix_i - \kappa _i\beta _jx_j + \tilde{\tau }_iy_i - \kappa _i\tilde{\tau }_jy_j + a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t) \bigg . \\&\left. + (\mu - r)\frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{\sigma ^2s^{2k}\gamma _iF_i^2(t)}\right] F_i(t) + \frac{1}{2\gamma _i}\sigma ^2s^{2k + 2}H_{iss}(t,s) \\&+ \omega _(x_i - \delta _iy_i)F_i(t) - \kappa _i\omega _j(x_j - \delta _jy_j)F_i(t) = 0. \end{aligned} \end{aligned}$$
(53)

With the condition of \(\beta _1 + \omega _1 = \beta _2 + \omega _2\) in Theorem 2, and separating the variables with \(\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right)\), we obtain

$$\begin{aligned} A_{it}(t) + A_i(t)(\beta _i + \omega _i) = 0, \quad F_{it}(t) + F_i(t)(\beta _i + \omega _i) = 0, \end{aligned}$$
(54)
$$\begin{aligned} \begin{aligned} B_{it}(t)&+ \gamma _i\left[ a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t)\right] A_i(t) \\&- \frac{\gamma _i^2}{2}\left[ b_i^2q_i^{*2}(t) - 2\rho \kappa _ib_ib_jq_i^*(t)q_j^*(t) + \kappa _i^2b_j^2q_j^{*2}(t)\right] F_i^2(t) = 0, \end{aligned} \end{aligned}$$
(55)
$$\begin{aligned} G_{it}(t) + \gamma _i\left[ a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t)\right] F_i(t) = 0, \end{aligned}$$
(56)
$$\begin{aligned} \begin{aligned} C_{it}&(t,s) + \mu sC_{is}(t,s) + (\mu - r)\frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{\sigma ^2s^{2k}F_i^2(t)}\cdot A_i(t) \\&- \frac{\left[ (\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)\right] ^2}{2\sigma ^2s^{2k}F_i^2(t)} - s\frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{F_i(t)}H_{is}(t,s) \\&+ \frac{1}{2}\sigma ^2s^{2k + 2}\left[ C_{iss}(t,s) - H_{is}^2(t,s)\right] = 0, \end{aligned} \end{aligned}$$
(57)
$$\begin{aligned} H_{it}(t,s) + \mu sH_{is}(t,s) + (\mu - r)\frac{(\mu - r)A_i(t) - \sigma ^2s^{2k + 1}F_i(t) \cdot H_{is}(t,s)}{\sigma ^2s^{2k}F_i(t)} + \frac{1}{2}\sigma ^2s^{2k + 2}H_{iss}(t,s) = 0. \end{aligned}$$
(58)

Considering the boundary conditions, we have

$$\begin{aligned} A_i(t) = F_i(t) = \mathrm {e}^{(\beta _i + \omega _i)(T - t)}, \end{aligned}$$
(59)
$$\begin{aligned} \begin{aligned} B_i(t) =&\gamma _i\int _{t}^{T}\left[ a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(s) - \kappa _ia_j\theta _jq_j^*(s)\right] \mathrm {e}^{(\beta _i + \omega _i)(T - s)}\mathrm {d}s \\&- \frac{\gamma _i^2}{2}\int _{t}^{T}\left[ b_i^2q_i^{*2}(s) - 2\rho \kappa _ib_ib_jq_i^*(s)q_j^*(s) + \kappa _i^2b_j^2q_j^{*2}(s)\right] \mathrm {e}^{2(\beta _i + \omega _i)(T - 2)}\mathrm {d}s, \end{aligned} \end{aligned}$$
(60)
$$\begin{aligned} G_i(t) = \gamma _i\int _{t}^{T}\left[ a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(s) - \kappa _ia_j\theta _jq_j^*(s)\right] \mathrm {e}^{(\beta _i + \omega _i)(T - s)}\mathrm {d}s, \end{aligned}$$
(61)

To solve (58), we assume that \(H_i(t,s)\) admits the following affine form:

$$\begin{aligned} H_i(t,s) = M(t) + N(t)s^{-2k} \end{aligned}$$
(62)

when substituting M(t) and N(t) into (58), we have

$$\begin{aligned} M_t + N_ts^{-2k} - 2k\mu s^{-2k}N(t) + \frac{(\mu - r)^2}{\sigma ^2s^{2k}} + 2k(\mu - r)s^{-2k}N(t) + k(2k + 1)\sigma ^2N(t) = 0. \end{aligned}$$
(63)

Matching coefficients yields

$$\begin{aligned} \left\{ \begin{array}{l} M_t + k(2k + 1)\sigma ^2N(t) = 0, \\ M(T) = 0. \end{array}\right. \end{aligned}$$
(64)

and

$$\begin{aligned} \left\{ \begin{array}{l} N_t - 2r\mu N(t) + \frac{(\mu - r)^2}{\sigma ^2} = 0, \\ N(T) = 0. \end{array}\right. \end{aligned}$$
(65)

Recalling the boundary conditions, we can obtain

$$\begin{aligned} \left\{ \begin{array}{l} M(t) = \frac{(2k + 1)(\mu - r)^2}{4kr^2}\left[ \mathrm {e}^{2kr(t - T)} - 1\right] - \frac{(2k + 1)(\mu - r)^2}{2r}(t - T), \\ N(t) = - \frac{(\mu - r)^2}{2kr\sigma ^2}\left[ \mathrm {e}^{2kr(t - T)} - 1\right] . \end{array}\right. \end{aligned}$$
(66)

Similiarly, we can get that \(C_i(t, s)\) is a solution of the linear ordinary differential equations, which admits the form in (29).

Moreover, the time-consistent Nash equilibrium reinsurance-investment strategy of insurer i should satisfy

$$\begin{aligned} \left\{ {\begin{array}{l} q_i^*(t) = \frac{\rho \kappa _ib_j}{b_i}q_j^*(t) + \frac{a_i\theta _i}{b_i^2\gamma _i\mathrm {e}^{(\beta _i + \omega _i)(T - t)}}, \\ u_i^*(t) = \kappa _iu_j^*(t) + \frac{(\mu - r) + 2k\sigma ^2N(t)}{\sigma ^2s^{2k}\gamma _i\mathrm {e}^{(\beta _i + \omega _i)(T - t)}}. \\ \end{array}}\right. \end{aligned}$$
(67)

From (67), we can get explicit expressions for the equilibrium reinsurance and investment strategy of each insurer as displayed in (25) and (26).

The proof of Theorem 2 is completed.

Appendix B

Proof of Theorem 3.

To solve HJB Eq. (37), consider the following Ansatz:

$$\begin{aligned} W_i(t,s,\hat{x}_i,y_i,y_j) = -\frac{1}{\nu _i}\exp \left\{ \nu _i\left[ R_i(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) - O_i(t) + \tilde{C}_i(t,s)\right] \right\} , \end{aligned}$$
(68)

with \(R_i(T) = 1\), \(O_i(T) = 0\) and \(\tilde{C}_i(T, s) = 0\), for all \(s \in \mathbb {R}\). By some simple calculation, we obtain the partial derivatives of \(W_i\), which are shown as follows

$$\begin{aligned} \left\{ \begin{array}{l} \frac{\partial {W_i}}{\partial t} = -\nu _i\left[ R_{it}(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) - O_{it}(t) + \tilde{C}_{it}(t,s)\right] W_i, \quad \frac{\partial {W_i}}{\partial \hat{x}_i} = - \nu _i{R_i}(t)W_i, \\ \frac{\partial ^2{W_i}}{\partial \hat{x}_i^2} = \nu _i^2R_i^2(t)W_i, \quad \frac{\partial {W_i}}{\partial s} = -\nu _i\tilde{C}_{is}(t,s)W_i, \quad \frac{\partial ^2{W_i}}{\partial s^2} = \left[ \nu _i^2\tilde{C}_{is}^2(t,s) - \nu _i\tilde{C}_{iss}(t,s)\right] W_i, \\ \frac{\partial ^2{W_i}}{\partial {\hat{x}_i}\partial s} = \nu _i^2R_i(t)\tilde{C}_{is}(t,s)W_i,\quad \frac{\partial {W_i}}{\partial {y_i}} = -\nu _iR_i(t)\omega _iW_i, \quad \frac{\partial {W_i}}{\partial {y_j}} = \nu _i\kappa _i\omega _jR_i(t)W_i. \end{array}\right. \end{aligned}$$
(69)

Inserting (68) and (69) into (37) yields

$$\begin{aligned} \begin{aligned}&\sup \limits _{\pi _i \in \Pi _i}\left\{ -\nu _i\left[ R_{it}(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) - O_{it}(t) + \tilde{C}_{it}(t,s)\right] - \mu s\nu _i\tilde{C}_{is}(t,s) - \left[ \beta _ix_i - \kappa _i\beta _jx_j + \tilde{\tau }_iy_i \right. \right. \\&\left. - \kappa _i\tilde{\tau }_jy_j + \varphi _iz_i - \kappa _i\varphi _jz_j + a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i(t) - \kappa _ia_j\theta _jq_j^*(t) + (\mu - r)\left( u_i(t) - \kappa _iu_j(t)^*\right) \right] \nu _iR_i(t)\\&+ \frac{1}{2}\left[ b_i^2q_i^2(t) - 2\rho \kappa _ib_ib_jq_i(t)q_j^*(t) + \kappa _i^2b_j^2q_j^{*2}(t) + \sigma ^2s^{2k}u_i^2(t) - 2\sigma ^2s^{2k}\kappa _iu_i(t)u_j^*(t) + \sigma ^2s^{2k}\kappa _i^2u_j^{*2}\right] \nu _i^2R_i^2(t)\\&+ \sigma ^2s^{2k+1}\left[ u_i(t) - \kappa _iu_j^*(t)\right] \nu _i^2R_i(t)\tilde{C}_{is}(t,s) + \frac{1}{2}\sigma ^2s^{2k+2}\left[ \nu _i^2\tilde{C}_{is}^2(t,s) - \nu _i\tilde{C}_{iss}(t,s)\right] \\&\left. - \left( x_i - \delta _iy_i - \mathrm{{e}}^{-\delta _ih_i}z_i\right) \nu _iR_i(t)\omega _i + \left( x_j - \delta _jy_j - \mathrm{{e}}^{-\delta _jh_j}z_j\right) \nu _i\kappa _i\omega _jR_i(t)\right\} = 0. \end{aligned} \end{aligned}$$
(70)

By differentiating (70) with respect to \(q_i\) and \(u_i\), we obtain

$$\begin{aligned} \left\{ {\begin{array}{l} q_i^*(t) = \frac{\rho \kappa _ib_j}{b_i}q_j^*(t) + \frac{a_i\theta _i}{b_i^2\nu _iR_i(t)}, \\ u_i^*(t) = \kappa _iu_j^*(t) + \frac{(\mu - r) - \sigma ^2s^{2k + 1}\nu _i\tilde{C}_{is}(t,s)}{\sigma ^2s^{2k}\nu _iR_i(t)}. \\ \end{array}}\right. \end{aligned}$$
(71)

Substituting (71) back into (70), we obtain

$$\begin{aligned} \begin{array}{l} -\left[ R_{it}(t)\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) - O_{it}(t) + \tilde{C}_{it}(t,s)\right] - \mu s\tilde{C}_{is}(t,s) - \left[ \beta _ix_i - \kappa _i\beta _jx_j + \tilde{\tau }_iy_i \right. \\ \left. - \kappa _i\tilde{\tau }_jy_j + \varphi _iz_i - \kappa _i\varphi _jz_j + a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t) + (\mu - r)\left( u_i^*(t) - \kappa _iu_j(t)^*\right) \right] R_i(t)\\ + \frac{1}{2}\left[ b_i^2q_i^{*2}(t) - 2\rho \kappa _ib_ib_jq_i^*(t)q_j^*(t) + \kappa _i^2b_j^2q_j^{*2}(t) + \sigma ^2s^{2k}u_i^{*2}(t) - 2\sigma ^2s^{2k}\kappa _iu_i^*(t)u_j^*(t) + \sigma ^2s^{2k}\kappa _i^2u_j^{*2}\right] \nu _iR_i^2(t)\\ + \sigma ^2s^{2k+1}\left[ u_i^*(t) - \kappa _iu_j^*(t)\right] \nu _iR_i(t)\tilde{C}_{is}(t,s) + \frac{1}{2}\sigma ^2s^{2k+2}\left[ \nu _i\tilde{C}_{is}^2(t,s) - \tilde{C}_{iss}(t,s)\right] \\ - \left( x_i - \delta _iy_i - \mathrm{{e}}^{-\delta _ih_i}z_i\right) R_i(t)\omega _i + \left( x_j - \delta _jy_j - \mathrm{{e}}^{-\delta _jh_j}z_j\right) \kappa _i\omega _jR_i(t) = 0. \end{array} \end{aligned}$$
(72)

With the condition of \(\beta _1 + \omega _1 = \beta _2 + \omega _2\) in Theorem 3, we can further get

$$\begin{aligned} \begin{aligned}&-\left[ R_{it}(t) + R_i(t)\left( \beta _i + \omega _i\right) \left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right) + O_{it}(t) - \tilde{C}_{it}(t,s)\right] - \mu s\tilde{C}_{is}(t,s) \\&- \left[ a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t) + (\mu - r)\left( u_i^*(t) - \kappa _iu_j(t)^*\right) \right] R_i(t)\\&+ \frac{1}{2}\left[ b_i^2q_i^{*2}(t) - 2\rho \kappa _ib_ib_jq_i^*(t)q_j^*(t) + \kappa _i^2b_j^2q_j^{*2}(t) + \sigma ^2s^{2k}u_i^{*2}(t) - 2\sigma ^2s^{2k}\kappa _iu_i^*(t)u_j^*(t) \right. \\&\left. + \sigma ^2s^{2k}\kappa _i^2u_j^{*2}\right] \nu _iR_i^2(t) + \sigma ^2s^{2k+1}\left[ u_i^*(t) - \kappa _iu_j^*(t)\right] \nu _iR_i(t)\tilde{C}_{is}(t,s) \\&+ \frac{1}{2}\sigma ^2s^{2k+2}\left[ \nu _i\tilde{C}_{is}^2(t,s) - \tilde{C}_{iss}(t,s)\right] = 0. \end{aligned} \end{aligned}$$
(73)

By separating the variables with and without \(\left( \hat{x}_i + \omega _iy_i - \kappa _i\omega _jy_j\right)\), we can derive the following equations:

$$\begin{aligned} R_{it}(t) + R_i(t)\left( \beta _i + \omega _i\right) = 0, \end{aligned}$$
(74)
$$\begin{aligned} \begin{aligned}&O_{it}(t) - \left[ a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(t) - \kappa _ia_j\theta _jq_j^*(t)\right] R_i(t)\\&+ \frac{1}{2}\left[ b_i^2q_i^{*2}(t) - 2\rho \kappa _ib_ib_jq_i^*(t)q_j^*(t) + \kappa _i^2b_j^2q_j^{*2}(t)\right] \nu _iR_i^2(t) = 0, \end{aligned} \end{aligned}$$
(75)
$$\begin{aligned} \begin{aligned}&-\tilde{C}_{it}(t,s) - \mu s\tilde{C}_{is}(t,s) - (\mu - r)\left( u_i^*(t) - \kappa _iu_j(t)^*\right) R_i(t)\\&+ \frac{1}{2}\sigma ^2s^{2k}\left[ u_i^*(t) - \kappa _iu_j^*(t)\right] ^2\nu _iR_i^2(t) + \sigma ^2s^{2k+1}\left[ u_i^*(t) - \kappa _iu_j^*(t)\right] \nu _iR_i(t)\tilde{C}_{is}(t,s) \\&+ \frac{1}{2}\sigma ^2s^{2k+2}\left[ \nu _i\tilde{C}_{is}^2(t,s) - \tilde{C}_{iss}(t,s)\right] = 0. \end{aligned} \end{aligned}$$
(76)

Considering the boundary conditions, we have

$$\begin{aligned} R_i(t) = \mathrm {e}^{(\beta _i + \omega _i)(T - t)}, \end{aligned}$$
(77)
$$\begin{aligned} \begin{aligned} O_i(t) =&\int _{t}^{T}\left[ a_i\varsigma _i - \kappa _ia_j\varsigma _j + a_i\theta _iq_i^*(s) - \kappa _ia_j\theta _jq_j^*(s)\right] \mathrm {e}^{(\beta _i + \omega _i)(T - s)}\\&+ \frac{1}{2}\left[ b_i^2q_i^{*2}(s) - 2\rho \kappa _ib_ib_jq_i^*(s)q_j^*(s) + \kappa _i^2b_j^2q_j^{*2}(s)\right] \nu _i\mathrm {e}^{2(\beta _i + \omega _i)(T - s)}. \end{aligned} \end{aligned}$$
(78)

Substituting \(u_i^*(t)\) in (71) into the Eq. (76), we have

$$\begin{aligned} \begin{aligned}&-\tilde{C}_{it}(t,s) - \mu s\tilde{C}_{is}(t,s) - (\mu - r)\frac{(\mu - r) - \sigma ^2s^{2k + 1}\nu _i\tilde{C}_{is}(t,s)}{\sigma ^2s^{2k}\nu _i}\\&+ \frac{\left[ (\mu - r) - \sigma ^2s^{2k + 1}\nu _i\tilde{C}_{is}(t,s)\right] ^2}{2\sigma ^2s^{2k}\nu _i}&+ s\left[ (\mu - r) - \sigma ^2s^{2k + 1}\nu _i\tilde{C}_{is}(t,s)\right] \tilde{C}_{is}(t,s) \\&+ \frac{1}{2}\sigma ^2s^{2k+2}\left[ \nu _i\tilde{C}_{is}^2(t,s) - \tilde{C}_{iss}(t,s)\right] = 0. \end{aligned} \end{aligned}$$
(79)

To solve (79), we assume that \(\tilde{C}_i(t,s)\) admits the following affine form:

$$\begin{aligned} \tilde{C}_i(t,s) = \tilde{M}(t) + \tilde{N}(t)s^{-2k} \end{aligned}$$
(80)

when substituting \(\tilde{M}(t)\) and \(\tilde{N}(t)\) into (79), we have

$$\begin{aligned} -(\tilde{M}_t + \tilde{N}_ts^{-2k}) +2krs^{-2k}\tilde{N}(t) - \frac{(\mu - r)^2}{2\sigma ^2s^{2k}\nu _i} - k(2k + 1)\sigma ^2\tilde{N}(t) = 0. \end{aligned}$$
(81)

Matching coefficients yields

$$\begin{aligned} \left\{ \begin{array}{l} \tilde{M}_t + k(2k + 1)\sigma ^2\tilde{N}(t) = 0, \\ \tilde{M}(T) = 0. \end{array}\right. \end{aligned}$$
(82)

and

$$\begin{aligned} \left\{ \begin{array}{l} \tilde{N}_t - 2kr\tilde{N} + \frac{(\mu - r)^2}{2\sigma ^2\nu _i} = 0, \\ \tilde{N}(T) = 0. \end{array}\right. \end{aligned}$$
(83)

Recalling the boundary conditions, we can obtain

$$\begin{aligned} \left\{ \begin{array}{l} \tilde{M}(t) = \frac{(2k + 1)(\mu - r)^2}{8kr^2\nu _i}\left[ \mathrm {e}^{2rk(t - T)} - 1\right] - \frac{(2k + 1)(\mu - r)^2}{4r\nu _i}(t - T), \\ \tilde{N}(t) = - \frac{(\mu - r)^2}{4kr\sigma ^2\nu _i}\left[ \mathrm {e}^{2kr(t - T)} - 1\right] . \end{array}\right. \end{aligned}$$
(84)

Plugging \(R_i(t)\) and \(C_i(t,s)\) into (71) implies

$$\begin{aligned} \left\{ {\begin{array}{l} q_i^*(t) = \frac{\rho \kappa _ib_j}{b_i}q_j^*(t) + \frac{a_i\theta _i}{b_i^2\nu _i\mathrm {e}^{(\beta _i + \omega _i)(T - t)}}, \\ u_i^*(t) = \kappa _iu_j^*(t) + \frac{(\mu - r) + 2k\sigma ^2\nu _i\tilde{N}(t)}{\sigma ^2s^{2k}\nu _i\mathrm {e}^{(\beta _i + \omega _i)(T - t)}}. \\ \end{array}}\right. \end{aligned}$$
(85)

From (85), the desired expressions of the Nash equilibrium strategies are given by (41) and (42).

This completes the proof of Theorem 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, N., Zhu, H. & Zhang, C. Stochastic Differential Games on Optimal Investment and Reinsurance Strategy with Delay Under the CEV Model. Methodol Comput Appl Probab 25, 54 (2023). https://doi.org/10.1007/s11009-023-10009-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11009-023-10009-2

Keywords

Navigation