Skip to main content
Log in

Estimating the Logarithm of Characteristic Function and Stability Parameter for Symmetric Stable Laws

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Let \(X_1,\ldots ,X_n\) be an i.i.d. sample from symmetric stable distribution with stability parameter \(\alpha\) and scale parameter \(\gamma\). Let \(\varphi _n\) be the empirical characteristic function. We prove a uniform large deviation inequality: given preciseness \(\epsilon >0\) and probability \(p\in (0,1)\), there exists universal (depending on \(\epsilon\) and p but not depending on \(\alpha\) and \(\gamma\)) constant \(\bar{r}>0\) so that

$$P\big (\sup _{u>0:r(u)\le \bar{r}}|r(u)-\hat{r}(u)|\ge \epsilon \big )\le p,$$

where \(r(u)=(u\gamma )^{\alpha }\) and \(\hat{r}(u)=-\ln |\varphi _n(u)|\). As an applications of the result, we show how it can be used in estimation the unknown stability parameter \(\alpha\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For mathematical tractability in formulas, in particular for the tail estimation in (7) and (11), we provide proof for the symmetric stable laws. Similar construction of proof can be applied for the general stable laws.

  2. For the general stable laws it implies for the existence of constants \(L_1(\alpha ,\beta )=L(a)(1-\beta )\) and \(L_2(\alpha ,\beta )=L(a)(1+\beta )\) with\((1-\beta )\in [-2,0]\) and \((1+\beta )\in [0,2]\).

  3. The existence of \(\underline{\alpha }\) is a common assumption in practice, e.g., McCulloch (1996); Kogon and Williams (1998); Nolan (2001) suggest \(\underline{\alpha }=0.5\).

References

  • Bibalan MH, Amindavar H, Amirmazlaghani M (2017) Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach. Sign Proc 130:323–336

    Article  Google Scholar 

  • Csörgo S (1981) Limit behaviour of the empirical characteristic function. Ann Prob 9(1):130–144

    Article  MathSciNet  Google Scholar 

  • Csörgo S (1985) Rates of uniform convergence for the empirical charateristic function. Acta Scientiarum Mathematicarum 48:97–102

    MATH  Google Scholar 

  • Efromovich S (2008) Adaptive estimation of and oracle inequalities for probability densities and characteristic functions. Ann Stats 36(3):1127–1155

    Article  MathSciNet  Google Scholar 

  • Efromovich S (2018) Missing and Modified Data in Nonparametric Estimation. CRC Press

  • Feuerverger A, Mureika RA (1977) The empirical characteristic function and its applications. The Annals of Statistics 5(1):88–97

    Article  MathSciNet  Google Scholar 

  • Kakinaka S, Umeno K (2020) Flexible two-point selection approach for characteristic function-based parameter estimation of stable laws. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(7):073128

  • Kogon SM, Williams DB (1998) Characteristic function based estimation of stable distribution parameters. In: Adler RJ, Feldman RE, Taqqu MS (eds) A Practical Guide to Heavy Tails. Birkhäuser, Boston, pp 311–335

    Google Scholar 

  • Krutto A (2016) Parameter estimation in stable law. Risks 4(4):43

    Google Scholar 

  • Krutto A (2018) Empirical cumulant function based parameter estimation in stable laws. Acta et Commentationes Universitatis Tartuensis de Mathematica 22(2):311–338

    Article  MathSciNet  Google Scholar 

  • McCulloch JH (1996) Financial applications of stable distributions. In G. Maddala and C. Rao (Eds.), Statistical Methods in Finance, Volume 14 of Handbook of Statistics, pp. 393–425. Elsevier

  • Nolan JP (1997) Numerical calculation of stable densities and distribution functions. Comm Stats Stochastic Models 13(4):759–774

    Article  MathSciNet  Google Scholar 

  • Nolan JP (2001) Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-Nielsen O, Resnick S, Mikosch T (eds) Lévy Processes. Birkhäuser, Boston, pp 379–400

    Chapter  Google Scholar 

  • Nolan JP (2020) Univariate Stable Distributions. Springer International Publishing

  • Paulson AS, Holcomb EW, Leitch RA (1975) The estimation of the parameters of the stable laws. Biometrika 62(1):163–170

    Article  MathSciNet  Google Scholar 

  • Press JS (1972) Estimation in univariate and multivariate stable distributions. J Amer Statist Assoc 67(340):842–846

    Article  MathSciNet  Google Scholar 

  • R Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

  • Robust Analysis Inc. (2017) STABLE 5.3 R Version for Windows. Washington, DC, USA: Robust Analysis Inc. http://www.robustanalysis.com/

  • Samorodnitsky G, Taqqu MS (1994) Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York

    MATH  Google Scholar 

  • Ushakov NG (1999) Selected Topics in Characteristic Functions. Walter de Gruyter, Utrecht

    Book  Google Scholar 

  • van der Vaart A (1998) Asymptotic Statistics. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

J. Lember is supported by Estonian institutional research funding IUT34-5 and Estonian Research Council grant PRG865. A. Krutto is supported by Estonian institutional research funding IUT34-5, European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 801133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jüri Lember.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lember, J., Krutto, A. Estimating the Logarithm of Characteristic Function and Stability Parameter for Symmetric Stable Laws. Methodol Comput Appl Probab 24, 2149–2167 (2022). https://doi.org/10.1007/s11009-021-09908-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-021-09908-z

Keywords

MSC Codes

Navigation