Skip to main content
Log in

Nonlocal Kundu–Eckhaus equation: integrability, Riemann–Hilbert approach and Cauchy problem with step-like initial data

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to discuss the Cauchy problem of integrable nonlocal (reverse-space-time) Kundu–Eckhaus (KE) equation through the Riemann–Hilbert (RH) method. Firstly, based on the zero-curvature equation, we present an integrable nonlocal KE equation and its Lax pair. Then, we discuss the properties of eigenfunctions and scattering matrix, such as analyticity, asymptotic behavior, and symmetry. Finally, for the prescribed step-like initial value: \(u(z,t)=o(1)\), \(z\rightarrow -\infty \) and \(u(z,t)=R+o(1)\), \(z\rightarrow +\infty \), where \(R>0\) is an arbitrary constant, we consider the initial value problem of the nonlocal KE equation. The paramount techniques is the asymptotic analysis of the associated RH problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Zakharov, V.E., Takhtajan, L.A.: Equivalance of nonlinear Schrödinger equation and Heisenberg ferromagnetic equation. Theor. Math. Phys. 38, 26–35 (1979)

    Article  Google Scholar 

  2. Ablowitz, M.J., Biondini, G., Ostrovsky, L.A.: Optical solitons: perspectives and applications. CHAOS 10, 471–474 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Kundu, A.: Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  4. Calogero, F., Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDEs and their integrability, I. Inverse Probl. 3, 229–262 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. A Math. Phys. 471, 20150236 (2015)

    ADS  MathSciNet  Google Scholar 

  6. Qiu, D.Q., Cheng, W.G.: The N-fold Darboux transformation for the Kundu–Eckhaus equation and dynamics of the smooth positon solutions. Commun. Nonlinear Sci. Numer. Simul. 78, 104887 (2019)

    Article  MathSciNet  Google Scholar 

  7. Wang, G.X., Wang, X.B., Han, B., Xue, Q.: Inverse scattering method for the Kundu–Eckhaus equation with zero/nonzero boundary conditions. Z. Naturforsch. A 76, 315–327 (2021)

    Article  ADS  Google Scholar 

  8. Wang, D.S., Wang, X.L.: Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach. Nonlinear Anal. Real. 41, 334–361 (2018)

    Article  MathSciNet  Google Scholar 

  9. Luo, J.H., Fan, E.G.: A \(\bar{\partial }\)-dressing approach to the Kundu–Eckhaus equation. J. Geom. Phys. 167, 104291 (2021)

    Article  MathSciNet  Google Scholar 

  10. Cui, S.K., Wang, Z.: Numerical inverse scattering transform for the focusing and defocusing Kundu–Eckhaus equations. Physica D 454, 133838 (2023)

    Article  MathSciNet  Google Scholar 

  11. Guo, B.L., Liu, N.: Long-time asymptotics for the Kundu–Eckhaus equation on the half-line. J. Math. Phys. 59, 061505 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chai, X.D., Zhang, Y.F.: The Dressing method and dynamics of soliton solutions for the Kundu–Eckhaus equation. Nonlinear Dyn. 111, 5655–5669 (2023)

    Article  Google Scholar 

  13. Guo, N., Xu, J., Wen, L.L., Fan, E.G.: Rogue wave and multi-pole solutions for the focusing Kundu–Eckhaus equation with nonzero background via Riemann-Hilbert problem method. Nonlinear Dyn. 103, 1851–1868 (2021)

    Article  Google Scholar 

  14. Hu, B.B., Xia, T.C.: A Riemann–Hilbert approach to the initial-boundary value problem for Kundu–Eckhaus equation on the half line. Complex Var. Elliptic. 64, 2019–2039 (2019)

    Article  MathSciNet  Google Scholar 

  15. Zhu, Q.Z., Xu, J., Fan, E.G.: The Riemann–Hilbert problem and long-time asymptotics for the Kundu–Eckhaus equation with decaying initial value. Appl. Math. Lett. 76, 81–89 (2018)

    Article  MathSciNet  Google Scholar 

  16. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266, 5209–5253 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ma, R.H., Fan, E.G.: Long time asymptotics behavior of the focusing nonlinear Kundu–Eckhaus equation. Chin. Ann. Math. B 44, 235–264 (2023)

    Article  MathSciNet  Google Scholar 

  18. Qiu, D.Q., Cheng, W.G.: N-fold Darboux transformation of the two-component Kundu–Eckhaus equations and non-symmetric doubly localized rogue waves. Eur. Phys. J. Plus 135, 13 (2020)

    Article  ADS  Google Scholar 

  19. Wang, C.J., Zhang, J.: Riemann–Hilbert approach and N-soliton solutions of the two-component Kundu–Eckhaus equation. Theor. Math. Phys. 212, 1222–1236 (2022)

    Article  MathSciNet  Google Scholar 

  20. Dafounansou, O., Mbah, D.C., Taussé Kamdoum, F.L., Kwato Njock, M.G.: Darboux transformations for the multicomponent vector solitons and rogue waves of the multiple coupled Kundu–Eckhaus equations. Wave Motion 114, 103041 (2022)

    Article  MathSciNet  Google Scholar 

  21. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  ADS  Google Scholar 

  22. Yan, Z.Y.: Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: a unified two-parameter model. Appl. Math. Lett. 47, 61–68 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ma, L.Y., Zhu, Z.N.: Nonlocal nonlinear Schrödinger equation and its discrete version: soliton solutions and gauge equivalence. J. Math. Phys. 57, 083507 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gadzhimuradov, T.A., Agalarov, A.M.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Article  ADS  Google Scholar 

  25. Rao, J.G., Cheng, Y., He, J.S.: Rational and semirational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lou, S.Y., Huang, F.: Alice-Bob physics: coherent solutions of nonlocal KdV systems. Sci. Rep. 7, 1–11 (2017)

    Article  ADS  Google Scholar 

  27. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ablowitz, M.J., Feng, B.F., Luo, X.D., Musslimani, Z.H.: Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions. Stud. Appl. Math. 141, 267–307 (2018)

    Article  MathSciNet  Google Scholar 

  29. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg–de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699–708 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gürses, M., Pekcan, A.: Nonlocal KdV equations. Phys. Lett. A 384, 126894 (2020)

    Article  MathSciNet  Google Scholar 

  31. Li, J., Xia, T.C.: N-soliton solutions for the nonlocal Fokas–Lenells equation via RHP. Appl. Math. Lett. 113, 106850 (2021)

    Article  MathSciNet  Google Scholar 

  32. Deng, Y.H., Meng, X.H., Yue, G.M., Shen, Y.J.: Soliton solutions for the nonlocal reverse space Kundu–Eckhaus equation via symbolic calculation. Optik 252, 168379 (2022)

    Article  ADS  Google Scholar 

  33. Parasuraman, E.: Stability of kink, anti kink and dark soliton solution of nonlocal Kundu–Eckhaus equation. Optik 290, 171279 (2023)

    Article  ADS  Google Scholar 

  34. Gerdjikov, V.S., Saxena, A.: Complete integrability of nonlocal nonlinear Schrödinger equation. J. Math. Phys. 58, 013502 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Yang, B., Chen, Y.: Dynamics of rogue waves in the partially PT-symmetric nonlocal Davey–Stewartson systems. Commun. Nonlinear Sci. Numer. Simulat. 69, 287–303 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Hanif, Y., Saleem, U.: Broken and unbroken PT-symmetric solutions of semi-discrete nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 98, 233–244 (2019)

    Article  Google Scholar 

  37. Yu, F.J., Fan, R.: Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrödinger equations. Appl. Math. Lett. 103, 106209 (2020)

    Article  MathSciNet  Google Scholar 

  38. Yang, B., Yang, J.K.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140, 178–201 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 62, 480–488 (2018)

    Article  ADS  Google Scholar 

  40. Tang, X.Y., Liang, Z.F., Hao, X.Z.: Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system. Commun. Nonlinear Sci. Numer. Simul. 60, 62–71 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  41. Zhang, G.Q., Yan, Z.Y.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Physica D 402, 132170 (2020)

    Article  MathSciNet  Google Scholar 

  42. Luo, J.H., Fan, E.G.: \(\bar{\partial }\)-dressing method for the nonlocal mKdV equation. J. Geom. Phys. 177, 104550 (2022)

    Article  MathSciNet  Google Scholar 

  43. Ma, W.X.: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 177, 104522 (2022)

    Article  MathSciNet  Google Scholar 

  44. Silem, A., Lin, Ji., Akhtar, N.: Nonautonomous dynamics of local and nonlocal Fokas–Lenells models. J. Phys. A: Math. Theor. 56, 365201 (2023)

    Article  MathSciNet  Google Scholar 

  45. Ma, W.X.: Riemann–Hilbert problems and soliton solutions of nonlocal real reverse-space time mKdV equations. J. Math. Anal. Appl. 498, 124980 (2021)

    Article  Google Scholar 

  46. Rybalko, Y., Shepelsky, D.: Riemann–Hilbert approach for the integrable nonlocal nonlinear Schrödinger equation with step-like initial data, Visnyk of V. N. Karazin Kharkiv National University Ser. Mathematics. Appl. Math. Mech. 88, 4–16 (2018)

    Google Scholar 

  47. Liu, L.L., Zhang, W.G.: On a Riemann–Hilbert problem for the focusing nonlocal mKdV equation with step-like initial data. Appl. Math. Lett. 116, 107009 (2021)

    Article  MathSciNet  Google Scholar 

  48. Hu, B.B., Shen, Z.Y., Zhang, L., Fang, F.: Riemann–Hilbert approach to the focusing and defocusing nonlocal derivative nonlinear Schrödinger equation with step-like initial data. Appl. Math. Lett. 148, 108885 (2024)

    Article  Google Scholar 

  49. Zhang, Y.S., Xu, S.W.: The soliton solutions for the Wadati–Konno–Ichikawa equation. Appl. Math. Lett. 99, 105995 (2020)

    Article  MathSciNet  Google Scholar 

  50. Hu, B.B., Zhang, L., Lin, J.: Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model. Nonlinear Dyn. 107, 2773–2785 (2022)

    Article  Google Scholar 

  51. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  52. He, F.J., Fan, E.G., Xu, J.: Long-time asymptotics for the nonlocal mKdV equation. Commun. Theor. Phys. 71, 475–488 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  53. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. J. Math. Phys. 60, 031504 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  54. Rybalko, Y., Shepelsky, D.: Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. Stud. Appl. Math. 147, 872–903 (2021)

    Article  MathSciNet  Google Scholar 

  55. Ai, L.P., Xu, J.: On a Riemann-Hilbert problem for the Fokas–Lenells equation. Appl. Math. Lett. 87, 57–63 (2019)

    Article  MathSciNet  Google Scholar 

  56. Hu, B.B., Zhang, L., Xia, T.C., Zhang, N.: On the Riemann–Hilbert problem of the Kundu equation. Appl. Math. Comput. 381, 125262 (2020)

    MathSciNet  Google Scholar 

  57. Hu, B.B., Zhang, L., Zhang, N.: On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation. J. Comput. Appl. Math. 390, 113393 (2021)

    Article  Google Scholar 

  58. Hu, B.B., Lin, J., Zhang, L.: On the Riemann–Hilbert problem for the integrable three-coupled Hirota system with a \(4\times 4\) matrix Lax pair. Appl. Math. Comput. 428, 127202 (2022)

    Google Scholar 

  59. Hu, B.B., Zhang, L., Lin, J.: The initial-boundary value problems of the new two-component generalized Sasa–Satsuma equation with a \(4\times 4\) matrix Lax pair. Anal. Math. Phys. 12, 109 (2022)

    Article  Google Scholar 

  60. Rybalko, Y., Shepelsky, D.: Asymptotic stage of modulation instability for the nonlocal nonlinear Schrödinger equation. Physica D 428, 133060 (2021)

    Article  Google Scholar 

  61. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the nonlocal nonlinear Schrödinger equation with step-like initial data. J. Differ. Equ. 270, 694–724 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express our sincere thanks to every member in our discussion group for their valuable comments.

Funding

This study was funded by National Natural Science Foundation of China (Grant Number 12147115), by Natural Science Foundation of Anhui Province (Grant Number 2108085QA09), by University Natural Science Research Project of Anhui Province (Grant Numbers 2022AH051109 and 2023AH040225), by Discipline (Subject) Leader Cultivation Project of Anhui Province (Grant Number DTR2023052), by Scientific Research Foundation Funded Project of Chuzhou University (Grant Numbers 2022qd022 and 2022qd038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zu-Yi Shen or Ling Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, BB., Shen, ZY. & Zhang, L. Nonlocal Kundu–Eckhaus equation: integrability, Riemann–Hilbert approach and Cauchy problem with step-like initial data. Lett Math Phys 114, 55 (2024). https://doi.org/10.1007/s11005-024-01802-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-024-01802-2

Keywords

Mathematics Subject Classification

Navigation