Skip to main content
Log in

Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We classify almost multiplicity free subgroups K of compact simple Lie groups G. The problem is related to the integrability of Riemannian and sub-Riemannian geodesic flows of left-invariant metrics defined by a specific extension of integrable systems from \(T^*K\) to \(T^*G\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

We do not analyse or generate any datasets, because our work proceeds within a theoretical and mathematical approach.

Notes

  1. Alternatively, we can use a following general statement. Assume that compact group G acts freely in a Hamiltonian way on a symplectic manifold M. If a G–invariant Hamiltoniam system is integrable in a noncommutative sense on the reduced space M/G with \(\delta \)–dimensional invariant tori, then the original system on M is also integrable with \((\delta +{{\,\mathrm{\textrm{rank}}\,}}G)\)–dimensional invariant tori (see [19, 33])

  2. Here we take \(x_i\in {\mathfrak {p}}_i\), \(i=1,\dots ,n\), such that the dimensions of the isotropy algebras \({\mathfrak {g}}_{i}(x_0+\dots +x_i)\) and \({\mathfrak {g}}_{i-1}(x_0+\dots +x_i)\) are minimal.

References

  1. Agrachev, A.A.: Methods of control theory in nonholonomic geometry. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, pp. 1473–1483. Basel, Birkhäuser (1995)

  2. Berestovskii, V.N., Zubareva, I.A.: Sub-Riemannian distance in the Lie groups SU(2) and SO(3). Siberian Adv. Math. 26(2), 77–89 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bogoyavlenski, O.I.: Integrable Euler equations associated with filtrations of Lie algebras. Math. USSR Sb. 49, 229–238 (1984)

    Article  Google Scholar 

  4. Bolsinov, A.: V: Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko-Fomenko conjecture. Theoret. Appl. Mech. 43, 145–168 (2016)

    Article  ADS  Google Scholar 

  5. Bolsinov, A.V., Bao, J.: A note about integrable systems on low-dimensional Lie groups and Lie algebras. Regul. Chaot. Dyn. 24(3), 266–280 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bolsinov, A.V., Jovanović, B.: Non-commutative integrability, moment map and geodesic flows. Ann. Glob. Anal. Geom. 23, 305–322 (2003). arXiv: math-ph/0109031

    Article  Google Scholar 

  7. Bolsinov, A.V., Jovanović, B.: Complete involutive algebras of functions on cotangent bundles of homogeneous spaces. Math. Z. 246(1–2), 213–236 (2004)

    Article  MathSciNet  Google Scholar 

  8. Borel, A., De Siebenthal, J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos. Commentarii Mathematici Helvetici. 23(1), 200–221 (1949)

    Article  MathSciNet  Google Scholar 

  9. Brockett, R.W.: Explicitly solvable control problems with nonholonomic constraints. In: Proceedings of 38th IEEE Conference on Decision and Control, vol 1, pp. 13–16. IEEE (1999)

  10. Dynkin, E.B.: Maximal subgroups of the classical groups. Am. Math. Soc. Transl. II Ser. 6, 111–243 (1957)

    Article  Google Scholar 

  11. Gel’fand, I., Tsetlin, M.: Finite-dimensional representation of the group of unimodular matrices. Dokl. Akad. Nauk SSSR 71, 825–828 (1950)

    MathSciNet  Google Scholar 

  12. Gel’fand, I., Tsetlin, M.: Finite-dimensional representation of the group of orthogonal matrices. Dokl. Akad. Nauk SSSR 71, 1017–1020 (1950)

    MathSciNet  Google Scholar 

  13. Golubitsky, M., Rothschild, B.: Primitive subalgebras of exceptional Lie algebras. Pac. J. Math. 39(2), 371–393 (1971)

    Article  MathSciNet  Google Scholar 

  14. Guillemin, V., Sternberg, S.: On collective complete integrability according to the method of Thimm. Ergod. Th. Dyn. Syst. 3, 219–230 (1983)

    Article  MathSciNet  Google Scholar 

  15. Guillemin, V., Sternberg, S.: The Gel’fand-Cetlin system and quantization of the complex flaf manifolds. J. Funct. Anal. 52, 106–128 (1983)

    Article  MathSciNet  Google Scholar 

  16. Guillemin, V., Sternberg, S.: Multiplicity-free spaces. J. Differ. Geom. 19, 31–56 (1984)

    Article  MathSciNet  Google Scholar 

  17. Heckman, G.J.: Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67(2), 333–356 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  18. Jovanović, B.: Geometry and integrability of Euler–Poincaré–Suslov equations. Nonlinearity 14, 1555–1567 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. Jovanović, B.: Symmetries and integrability. Publ. Inst. Math. (Beograd) (N.S.)84(98) , 1–36 (2008) arXiv:0812.4398

  20. Jovanović, B., Šukilović, T., Vukmirović, S.: Integrable systems associated to the filtrations of Lie algebras. Regul. Chaot. Dyn. 28, 44–61 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  21. Jurdjevic, V.: Optimal Control and Geometry: Integrable Systems. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  22. Krämer, M.: Multiplicity free subgroups of compact connected Lie groups. Arch. Math. 27, 28–36 (1976)

    Article  MathSciNet  Google Scholar 

  23. Mikityuk, I.V.: Integrability of the Euler equations associated with filtrations of semisimple Lie algebras. Math. USSR Sbornik 53, 541–549 (1986)

    Article  Google Scholar 

  24. Mishchenko, A.S., Fomenko, A.T.: Euler equations on finite-dimensional Lie groups. Izv. Acad. Nauk SSSR, Ser. Matem. vol. 42, no. 2, pp. 396–415 (Russian); English translation: Math. USSR-Izv., vol. 12, no. 2, pp. 371–389 (1978)

  25. Mishchenko, A.S., Fomenko, A.T.: Generalized Liouville method of integration of Hamiltonian systems. Funct. Anal. Appl. 12, 113–121 (1978)

    Article  MathSciNet  Google Scholar 

  26. Montgomery, R.: A tour of subriemannnian geometries, their geodesics and applications. Amer. Math. Soc. (2002)

  27. Paternain, G.P.: Multiplicity two actions and loop space homology. Ergod. Th. Dyn. Syst. 13, 143–151 (1993)

    Article  MathSciNet  Google Scholar 

  28. Sachkov, Yu.L.: Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions. Russian Math. Surv. 77, 99–163 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  29. Sadetov, S.T.: A proof of the Mishchenko-Fomenko conjecture (1981). Dokl. Math. 397, 751–754 (2004)

    MathSciNet  Google Scholar 

  30. Thimm, A.: Integrable geodesic flows on homogeneous spaces. Ergod. Th. Dyn. Syst. 1, 495–517 (1981)

    Article  MathSciNet  Google Scholar 

  31. Vinberg, E.B., Yakimova, O.S.: Complete families of commuting functions for coisotropic Hamiltonian actions. Adv. Math. 348, 523–540 (2019)

    Article  MathSciNet  Google Scholar 

  32. Woodward, C.: The classification of transversal multiplicity-free group actions. Ann. Glob. Anal. Geom. 14, 3–42 (1996)

    Article  MathSciNet  Google Scholar 

  33. Zung, N.T.: Torus actions and integrable systems. In: A. V. Bolsinov, A.T. Fomenko, A.A. Oshemkov (eds.), Topological Methods in the Theory of Integrable Systems. Cambridge Scientific Publ. (2006) arXiv:math.DS/0407455

Download references

Acknowledgements

The research was supported by the Project no. 7744592 MEGIC “Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics” of the Science Fund of Serbia. The authors would like to thank the reviewers for their thorough reviews and constructive comments, which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijana Šukilović.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović, B., Šukilović, T. & Vukmirović, S. Almost multiplicity free subgroups of compact Lie groups and polynomial integrability of sub-Riemannian geodesic flows. Lett Math Phys 114, 14 (2024). https://doi.org/10.1007/s11005-023-01757-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01757-w

Keywords

Mathematics Subject Classification

Navigation