Skip to main content
Log in

Gaudin model and Deligne’s category

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the construction of the higher Gaudin Hamiltonians associated with the Lie algebra \(\mathfrak {gl}_{n}\) admits an interpolation to any complex number n. We do this using the Deligne’s category \(\mathcal {D}_{t}\), which is a formal way to define the category of finite-dimensional representations of the group \(GL_{n}\), when n is not necessarily a natural number. We also obtain interpolations to any complex number n of the no-monodromy conditions on a space of differential operators of order n, which are considered to be a modern form of the Bethe ansatz equations. We prove that the relations in the algebra of higher Gaudin Hamiltonians for complex n are generated by our interpolations of the no-monodromy conditions. Our constructions allow us to define what it means for a pseudo-differential operator to have no monodromy. Motivated by the Bethe ansatz conjecture for the Gaudin model associated with the Lie superalgebra \(\mathfrak {gl}_{n\vert n'}\), we show that a ratio of monodromy-free differential operators is a pseudo-differential operator without monodromy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigen-sheaves. Preprint, https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf

  2. Chervov, A., Falqui, G.: Manin matrices and Talalaev’s formula. J. Phys. A Math. Theor. 41(19), 194006 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Comes, J., Wilson, B.: Deligne’s category Rep\((GL_{\delta })\) and representations of general linear supergroups. Represent. Theory 16, 568–609 (2012)

  4. Deligne, P.: La categorie des representations du groupe symetrique \({S}_{t}\), lorsque \(t\) n’est pas un entier naturel. In: Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces: Mumbai 2004, Studies in mathematics (Tata Institute of Fundamental Research), 19. Narosa Publishing House, New Delhi (2007)

  5. Deligne, P., Milne, J.S.: Tannakian categories. In: Hodge Cycles, Motives, and Shimura Varieties, volume 900 of Lecture Notes in Mathematics, pp. 101–228. Springer, Berlin (1982). https://www.jmilne.org/math/xnotes/tc.html

  6. Entova-Aizenbud, I., Hinich, V., Serganova, V.: Deligne categories and the limit of categories Rep\((GL(m|n))\). Int. Math. Res. Not. 2020(15), 4602–4666 (2020)

  7. Etingof, P.: Representation theory in complex rank. II. Adv. Math. 300, 473–504 (2016)

    Article  MathSciNet  Google Scholar 

  8. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs, vol. 205. AMS, Paris (2015)

  9. Etingof, P., Kannan, A.: Lectures on Symmetric Tensor Categories (2021). Preprint, arXiv:2103.04878

  10. Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikiĭ algebras. In: Infinite analysis, Part A, B (Kyoto, 1991), volume 16 of Advance Series in Mathematical Physics, pp. 197–215. World Scientific Publishing, River Edge (1992)

  11. Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin model, Bethe ansatz and critical level. Comm. Math. Phys. 166, 27–62 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Frenkel, E.: Affine algebras, Langlands duality and Bethe ansatz. In: XIth International Congress of Mathematical Physics (Paris, 1994), pp. 606–642. International Press, Cambridge (1995)

  13. Frenkel, E.: Gaudin model and opers. In: Infinite Dimensional Algebras and Quantum Integrable Systems, pp. 1–58. Basel, Birkhäuser (2005)

  14. Frenkel, E.: Langlands Correspondence for Loop Groups. Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press, Cambridge (2007)

  15. Gaudin, M.: Diagonalisation d’une classe d’hamiltoniens de spin. J. Phys. 37(10), 1089–1098 (1976)

    Article  MathSciNet  Google Scholar 

  16. Gaudin, M.: La fonction d’onde de Bethe. Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series]. Masson, Paris (1983)

  17. Huang, C., Mukhin, E., Vicedo, B., Young, C.: The Solutions of \({\mathfrak{g}}{\mathfrak{l}}_{M|N}\) Bethe Ansatz Equation and Rational Pseudodifferential Operators. Selecta Mathematica, New Series, vol. 6 (2019)

  18. Harris, J., Fulton, W.: Representation Theory: A First Course, volume 129 of Graduate Texts in Mathematics. Springer, New York (2004)

  19. Mukhin, E., Tarasov, V., Varchenko, A.: Bethe eigenvectors of higher transfer matrices. J. Stat. Mech. Theory Exp. 8, P08002 (2006)

  20. Mukhin, E., Tarasov, V., Varchenko, A.: Schubert calculus and representations of the general linear group. J. Am. Math. Soc. 22(4), 909–940 (2009)

    Article  MathSciNet  Google Scholar 

  21. Mukhin, E., Varchenko, A.: Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe ansatz conjecture. Trans. AMS 359, 5383–5418 (2007)

    Article  MathSciNet  Google Scholar 

  22. Mukhin, E., Vicedo, B., Young, C.: Gaudin models for \(gl(m|n)\). J. Math. Phys. 56(5), 051704 (2015)

  23. Rybnikov, L.: A proof of the Gaudin Bethe ansatz conjecture. Int. Math. Res. Not. 2020(22), 8766–8785 (2020)

    MathSciNet  Google Scholar 

  24. Scherbak, I., Varchenko, A.: Critical points of functions, \({\mathfrak{s}}{\mathfrak{l}}_2\) representations, and Fuchsian differential equations with only univalued solutions. Mosc. Math. J. 3(2), 621–645 (2003)

  25. Talalaev, D.: The quantum Gaudin system. Funct. Anal. Appl. 40(1), 73–77 (2006)

    Article  MathSciNet  Google Scholar 

  26. Tarasov, V., Uvarov, F.: Duality for Bethe algebras acting on polynomials in anticommuting variables. Lett. Math. Phys. 110, 3375–3400 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for the careful reading of the text and for many valuable remarks. The work was accomplished during L.R.’s stay at the Institut des Hautes Études Scientifiques (IHÉS) and at Harvard University. L.R. would like to thank IHÉS, especially Maxim Kontsevich, and Harvard University, especially Dennis Gaitsgory, for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Uvarov.

Ethics declarations

Conflict of interest

The work of F. U. is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feigin, B., Rybnikov, L. & Uvarov, F. Gaudin model and Deligne’s category. Lett Math Phys 114, 3 (2024). https://doi.org/10.1007/s11005-023-01747-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01747-y

Keywords

Navigation