Skip to main content
Log in

Higher-rank isomonodromic deformations and W-algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct the general solution of a class of Fuchsian systems of rank N as well as the associated isomonodromic tau functions in terms of semi-degenerate conformal blocks of \(W_N\)-algebra with central charge \(c=N-1\). The simplest example is given by the tau function of the Fuji–Suzuki–Tsuda system, expressed as a Fourier transform of the 4-point conformal block with respect to intermediate weight. Along the way, we generalize the result of Bowcock and Watts on the minimal set of matrix elements of vertex operators of the \(W_N\)-algebra for generic central charge and prove several properties of semi-degenerate vertex operators and conformal blocks for \(c=N-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Vertex operator corresponding to the highest weight vector of an irreducible representation of \(W_N\)-algebras associated with one of the N-dimensional fundamental representations of \({\mathfrak {s}}{\mathfrak {l}}_N\).

  2. One can derive the additive variant of Lemma 1 from the original multiplicative one by taking the limit \(M_\nu ={\mathbb {I}}+\epsilon A_\nu \) for \(\epsilon \rightarrow 0\).

  3. Since the spectrum of \(\varTheta _1\) is degenerate of spectral type \(\left( N-1,1\right) \), actually there is an ambiguity in the choice of the basis in the space of conformal blocks: taking their differences it is possible to choose another basis in which the leading terms are multiplied by \(\left( y-1\right) ^k\), \(k\in {\mathbb {Z}}_{>0}\).

  4. To compute \(w_k\) explicitly, it is convenient to introduce the generating function

    $$\begin{aligned} \begin{aligned} {\hat{W}}\left( z,w\right)&=\sum _{k=1}^{\infty } \frac{\left( z-w\right) ^{k-1}}{\left( k-1\right) !} {\hat{W}}^{(k)}\left( w\right) = \sum _{k,\alpha } \frac{\left( z-w\right) ^{k-1}}{\left( k-1\right) !} \begin{array}{c} \circ \\ \circ \end{array}\partial ^{k-1}\psi _\alpha ^+\left( w\right) \psi ^-_\alpha \left( w\right) \begin{array}{c} \circ \\ \circ \end{array}\; \\ \;&=\begin{array}{c} \circ \\ \circ \end{array}\sum _{\alpha }\psi ^+_\alpha \left( z\right) \psi ^-_\alpha \left( w\right) \begin{array}{c} \circ \\ \circ \end{array}=\sum _\alpha \psi ^+_\alpha \left( z\right) \psi ^-_\alpha \left( w\right) -\frac{N}{z-w}. \end{aligned} \end{aligned}$$

    In the bosonized picture, this generating function becomes \({\hat{W}}\left( z,w\right) =\sum _\alpha :e^{i\phi _\alpha \left( z\right) }:\,:e^{-i\phi _\alpha \left( w\right) }:-\frac{N}{z-w}\) Now, computing the expectation value of the product of this expression and two exponential fields, one obtains

    $$\begin{aligned} \langle {\hat{W}}\left( z,w\right) :e^{-i\left( {\varvec{\theta }},\varvec{\phi }\left( \infty \right) \right) }:\,:e^{i\left( {\varvec{\theta }}, \varvec{\phi }\left( 0\right) \right) }:\rangle =\sum _\alpha \frac{z^{\theta _\alpha }w^{-\theta _\alpha }-1}{z-w} =\sum _\alpha \sum _{k=1}^\infty \frac{\left( z-w\right) ^{k-1}}{\left( k-1\right) !}w^{-k}\frac{[\theta ^{(\alpha )}]_k}{k}. \end{aligned}$$

References

  1. Alday, L., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  2. Arakawa, T.: Representation theory of \(W\)-algebras. Invent. Math. 169(2), 219–320 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Arakawa, T.: Introduction to \(W\)-algebras and their representation theory, in perspectives in Lie Theory, Springer INdAM Series 19, arXiv:1605.00138 [math.RT]

  4. Arakawa, T., Molev, A.: Explicit generators in rectangular affine W-algebras of type A. Lett. Math. Phys. 107, 47–59 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Belavin, V., Haraoka, Y., Santachiara, R.: Rigid Fuchsian systems in 2-dimensional conformal field theories, arXiv:1711.04361 [hep-th]

  6. Belliard, R., Eynard, B., Ribault, S.: The geometry of Casimir \(W\)-algebras, arXiv:1707.05120 [math-ph]

  7. Belliard, R., Eynard, B.: Integrability of \({\cal{W}}(\widehat{{s\mathit{}{l}}_d})\)-symmetric Toda conformal field theories I : quantum geometry, arXiv:1801.03433v1 [math-ph]

  8. Bershtein, M., Gavrylenko, P., Marshakov, A.: Twist-field representations of \(W\)-algebras, exact conformal blocks and character identities. JHEP 2018, 108 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Bershtein, M., Gavrylenko, P., Marshakov A.: Cluster integrable systems, \(q\)-Painleve equations and their quantization, arXiv:1711.02063 [math-ph]

  10. Bershtein, M., Shchechkin, A.: Bilinear equations on Painlevé tau functions from CFT. Commun. Math. Phys. 339, 1021–1061 (2015)

    ADS  MATH  Google Scholar 

  11. Bershtein, M., Shchechkin, A.: \(q\)-deformed Painlevé tau function and \(q\)-deformed conformal blocks. J. Phys. A 50, 085202 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Beukers, F., Heckman, G.: Monodromy for the hypergeometric function \(_nF_{n-1}\). Invent. Math. 95, 325–354 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Borcherds, R.E.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83(10), 3068 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bouwknegt, P., McCarthy, J., Pilch, K.: The \(W_3\) algebra: modules, semi-infinite cohomology and BV algebras. Lect. Notes Phys. M42, 1–204 (1996)

    MATH  Google Scholar 

  15. Bouwknegt, P., Schoutens, K.: W symmetry in conformal field theory. Phys. Rept. 223, 183–276 (1993)

    ADS  MathSciNet  Google Scholar 

  16. Bowcock, P., Watts, G.M.T.: Null vectors, 3-point and 4-point functions in conformal field theory. Theor. Math. Phys. 98(3), 350–356 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Bullimore, M.: Defect networks and supersymmetric loop operators. JHEP 1502, 066 (2015)

    ADS  Google Scholar 

  18. Cafasso, M., Gavrylenko, P., Lisovyy, O.: Tau functions as Widom constants. Commun. Math. Phys. 365(2), 741–772 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Coman, I., Gabella, M., Teschner, J.: Line operators in theories of class \({\cal{S}}\), quantized moduli space of flat connections, and Toda field theory. JHEP 10, 143 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Coman, I., Pomoni, E., Teschner, J.: Toda conformal blocks, quantum groups, and flat connections, arXiv:1712.10225 [hep-th]

  21. De Sole, A., Kac, V.: Finite vs. affine \(W\)-algebras. Jpn. J. Math. 1(1), 137–261 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Fateev, V.A., Litvinov, A.V.: Correlation functions in conformal Toda field theory I. JHEP 0711, 002 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Fateev, V.A., Litvinov, A.V.: Integrable structure. W-symmetry and AGT relation. JHEP 1201, 051 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Fateev, V.A., Lukyanov, S.L.: The models of two-dimensional conformal quantum field theory with \(Z_n\) symmetry. Int. J. Mod. Phys. A 3(2), 507–520 (1988)

    ADS  Google Scholar 

  25. Fateev, V.A., Zamolodchikov, A.B.: Conformal quantum field theory models in two dimensions having \(Z_3\) symmetry. Nucl. Phys. B 280, 644–660 (1987)

    ADS  Google Scholar 

  26. Feigin, B., Frenkel, E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B 246(1–2), 75–81 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. In: Mathematical Surveys and Monographs, vol. 88. American Mathematical Society (2004)

  28. Frenkel, E., Kac, V., Radul, A., Wang, W.: \(W_{1+\infty }\) and \(W(gl_N)\) with central charge \(N\). Commun. Math. Phys. 170, 337–358 (1995)

    ADS  MATH  Google Scholar 

  29. Fuji, K., Suzuki, T.: Drinfeld–Sokolov hierarchies of type A and fourth order Painlevé systems. Funkcial. Ekvac. 53, 143–167 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 2012, 38 (2012)

    MATH  Google Scholar 

  31. Gamayun, O., Iorgov, N., Lisovyy, O.: How instanton combinatorics solves Painlevé VI, V and III’s. J. Phys. A46, 335203 (2013)

    MATH  Google Scholar 

  32. Gavrylenko, P.: Isomonodromic \(\tau \)-functions and \(W_N\)-conformal blocks. JHEP 2015, 167 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Gavrylenko, P., Lisovyy, O.: Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions. Commun. Math. Phys. 363, 1–58 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Gavrylenko, P., Marshakov, A.: Free fermions, W-algebras and isomonodromic deformations. Theor. Math. Phys. 187(2), 649–677 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Gavrylenko, P., Iorgov, N., Lisovyy, O.: On solutions of the Fuji–Suzuki–Tsuda system. SIGMA 14, 123 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Gomis, J., Le Floch, B.: ’t Hooft operators in Gauge theory from Toda CFT. JHEP 2011, 114 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Iorgov, N., Lisovyy, O., Teschner, J.: Isomonodromic tau-functions from Liouville conformal blocks. Commun. Math. Phys. 336, 671–694 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Iorgov, N., Lisovyy, O., Tykhyy, Y.: Painlevé VI connection problem and monodromy of \(c=1\) conformal blocks. JHEP 2013, 29 (2013)

    MATH  Google Scholar 

  39. Its, A., Lisovyy, O., Prokhorov, A.: Monodromy dependence and connection formulae for isomonodromic tau functions. Duke Math. J. 167, 1347 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. Res. Inst. Math. Sci. 18, 1137–1161 (1982)

    MathSciNet  MATH  Google Scholar 

  41. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. Physica D2, 306–352 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Jimbo, M., Nagoya, H., Sakai, H.: CFT approach to the \(q\)-Painlevé VI equation. J. Int. Syst. (2017). https://doi.org/10.1093/integr/xyx009

  43. Kac, V.: Vertex algebras for beginners. In: University Lecture Series, vol. 10. American Mathematical Society (1998)

  44. Kac, V.G., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Kanno, S., Matsuo, Y., Shiba, S.: Analysis of correlation functions in Toda theory and AGT-W relation for \(SU(3)\) quiver. Phys. Rev. D 82, 066009 (2010)

    ADS  Google Scholar 

  46. Lencsés, M., Novaes, F.: Classical conformal blocks and accessory parameters from isomonodromic deformations. J. High Energy Phys. 2018, 96 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Litvinov, A., Lukyanov, S., Nekrasov, N., Zamolodchikov, A.: Classical conformal blocks and Painlevé VI. JHEP 2014, 144 (2014)

    MATH  Google Scholar 

  48. Lukyanov, S.L., Fateev, V.A.: Conformally invariant models of two-dimensional quantum field theory with \(Z_N\)-symmetry. Sov. Phys. JETP 67(3), 447–454 (1988)

    Google Scholar 

  49. Mironov, A., Morozov, A.: On AGT relation in the case of \(U(3)\). Nucl. Phys. B 825, 1–37 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Nagoya, H.: Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations. J. Math. Phys. 56, 123505 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Nagoya, H., Yamada, Y.: Symmetries of quantum Lax equations for the Painlevé equations. Ann. Henri Poincaré 15, 313–344 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Nekrasov, N.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004)

    MathSciNet  MATH  Google Scholar 

  54. Norlund, N.E.: Hypergeometric functions. Acta Math. 94, 289–349 (1955)

    MathSciNet  MATH  Google Scholar 

  55. Suzuki, T.: A class of higher order Painlevé systems arising from integrable hierarchies of type A. AMS Contemp. Math. 593, 125–141 (2013)

    MATH  Google Scholar 

  56. Teschner, J.: Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I. Adv. Theor. Math. Phys. 15, 471–564 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Teschner, J.: Classical conformal blocks and isomonodromic deformations, arXiv:1707.07968 [hep-th]

  58. Teschner, J.: A guide to two-dimensional conformal field theory, arXiv:1708.00680 [hep-th]

  59. Tsuda, T.: UC hierarchy and monodromy preserving deformation. J. Reine Angew. Math. 690, 1–34 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Wyllard, N.: \(A_{N-1}\) conformal Toda field theory correlation functions from conformal \(N=2\) \(SU(N)\) quiver gauge theories. JHEP 0911, 002 (2009)

    ADS  MathSciNet  Google Scholar 

  61. Zamolodchikov, A.: Infinite additional symmetries in two-dimensional conformal field theory. Theor. Math. Phys. 65, 1205–1213 (1985)

    Google Scholar 

Download references

Acknowledgements

We would like to thank M. Bershtein, A. Marshakov, R. Santachiara and G. Watts for useful discussions and comments. The present work was supported by the NASU-CNRS PICS Project “Isomonodromic deformations and conformal field theory.” The work of P.G. was partially supported the Russian Academic Excellence Project ‘5-100’ and by the RSF Grant No. 16-11-10160. In particular, formulas of Section 4 have been obtained using support of Russian Science Foundation. P.G. is a Young Russian Mathematics award winner and would like to thank its sponsors and jury. The work of N.I. was partially supported by NAS of Ukraine (Project No. 0117U000238). N.I. thanks Max Planck Institute for Mathematics (Bonn), where a part of this research was done, for hospitality and excellent working conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Iorgov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Singular vectors of semi-degenerate Verma modules

For \(c=N-1\), we are going to use a free-boson realization of the \(W_N\)-algebra to find the singular vectors of the semi-degenerate Verma modules. It will be helpful to extend \(W_N=W({\mathfrak {s}}{\mathfrak {l}}_N)\) to \(W({\mathfrak {g}}{\mathfrak {l}}_N)\) by introducing one more free-boson field \(J\left( z\right) \) with the OPE

$$\begin{aligned} J\left( z\right) J\left( w\right) =\frac{1/N}{\left( z-w\right) ^2}+\text {regular}, \end{aligned}$$

and regular OPEs with the currents \(J_k\left( z\right) \) entering the definition of \(W_N\): \(J_k\left( z\right) J\left( w\right) =\text {regular}\). Introduce the currents \({\tilde{J}}_k(z)=J_k(z)+J(z)\) which have the following OPEs:

$$\begin{aligned} {\tilde{J}}_k\left( z\right) {\tilde{J}}_l\left( w\right) =\frac{\delta _{kl}}{\left( z-w\right) ^2}+\text {regular}, \end{aligned}$$

and define the generators of the \(W({\mathfrak {g}}{\mathfrak {l}}_N)\)-algebra:

$$\begin{aligned} {\widetilde{W}}^{(s)}\left( z\right) =\sum _{1\le i_1<\ldots <i_s\le N} :{{\tilde{J}}}_{i_1}\left( z\right) \cdots {{\tilde{J}}}_{i_s}\left( z\right) :, \quad s=1,\ldots ,N. \end{aligned}$$
(92)

We will use the mode expansion

$$\begin{aligned} {{\tilde{J}}}_k\left( z\right) =\sum _{p\in {\mathbb {Z}}} \frac{{{\tilde{a}}}^{(k)}_p}{z^{p+1}}, \end{aligned}$$
(93)

with modes acting on the bosonic Fock space \({\mathscr {F}}_{{\varvec{\theta }}}\) generated from the vacuum state \(|{\varvec{\theta }}\rangle \), \({\varvec{\theta }}=\left( \theta _1,\ldots ,\theta _N\right) \in {\mathbb {C}}^N\):

$$\begin{aligned} {{\tilde{a}}}^{(k)}_0 |{\varvec{\theta }}\rangle =\theta _k |{\varvec{\theta }}\rangle , \quad {{\tilde{a}}}^{(k)}_p |{\varvec{\theta }}\rangle =0,\quad k=1,\ldots ,N,\quad p>0. \end{aligned}$$
(94)

The semi-degenerate module \(\tilde{{\mathsf {L}}}_{\varvec{\theta }}\), \({\varvec{\theta }}=\left( a,0,\ldots ,0\right) \), of the \(W({\mathfrak {g}}{\mathfrak {l}}_N)\)-algebra is a \(W({\mathfrak {g}}{\mathfrak {l}}_N)\)-submodule of \({\mathscr {F}}_{{\varvec{\theta }}}\) generated by \(|{\varvec{\theta }}\rangle \). In what follows, only such \({\varvec{\theta }}\) will be used. For the action of modes of \({\widetilde{W}}^{(s)}\left( z\right) \) defined by

$$\begin{aligned} {\widetilde{W}}^{(s)}\left( z\right) =\sum _{p\in {\mathbb {Z}}} \frac{{\widetilde{W}}^{(s)}_p}{z^{p+s}}, \end{aligned}$$

using (92), (93) and (94), we have the following relations in \(W({\mathfrak {g}}{\mathfrak {l}}_N)\)-module \(\tilde{{\mathsf {L}}}_{\varvec{\theta }}\):

$$\begin{aligned} {\widetilde{W}}^{(s)}_{-p} |{\varvec{\theta }}\rangle = 0,\quad 0\le p \le s-2. \end{aligned}$$
(95)

We would like to find the implication of these relations for \(W({\mathfrak {s}}{\mathfrak {l}}_N)\)-submodule \({{\mathsf {L}}}_{\varvec{\theta }}\) of module \(\tilde{{\mathsf {L}}}_{\varvec{\theta }}\) generated by \(|{\varvec{\theta }}\rangle \). We have a relation which can be obtained from the expansion of (92) with the use of (23):

$$\begin{aligned} {\widetilde{W}}^{(s)}\left( z\right) =\sum _{r=0}^s \left( {\begin{array}{c}N-r\\ N-s\end{array}}\right) :J^{s-r}\left( z\right) : W^{(r)}\left( z\right) . \end{aligned}$$
(96)

In order to find the relations for the elements of \(W_N=W({\mathfrak {s}}{\mathfrak {l}}_N)\) acting on the vector \(|{\varvec{\theta }}\rangle \) in the module \(\tilde{{\mathsf {L}}}_{\varvec{\theta }}\), let us use the relation (96) acting on \(|{\varvec{\theta }}\rangle \) modulo vectors from the \(W_N\)-submodule \({\mathsf {L}}'_{\varvec{\theta }}\) generated by \(a_{-{p_1}}\cdots a_{-{p_l}}|{\varvec{\theta }}\rangle \), \(l>0\), \(p_1,\ldots ,p_l>0\). We have, for \(p>0\),

$$\begin{aligned} {\widetilde{W}}^{(s)}_{-p}|{\varvec{\theta }}\rangle = \sum _{r=0}^s \left( {\begin{array}{c}N-r\\ N-s\end{array}}\right) \left( a/N\right) ^{s-r} W^{(r)}_{-p}|{\varvec{\theta }}\rangle \quad \text {mod}\ {\mathsf {L}}'_{\varvec{\theta }}. \end{aligned}$$
(97)

These relations are linear and can be inverted:

$$\begin{aligned} {W}^{(r)}_{-p}|{\varvec{\theta }}\rangle = \sum _{s=0}^r \left( {\begin{array}{c}N-s\\ N-r\end{array}}\right) \left( -a/N\right) ^{r-s} {\widetilde{W}}^{(s)}_{-p}|{\varvec{\theta }}\rangle \quad \text {mod}\ {\mathsf {L}}'_{\varvec{\theta }}. \end{aligned}$$
(98)

Using (95), rewrite (98) as

$$\begin{aligned} \begin{aligned}&{W}^{(r)}_{-p}|{\varvec{\theta }}\rangle = \sum _{s=2}^{p+1} \left( {\begin{array}{c}N-s\\ N-r\end{array}}\right) \left( -a/N\right) ^{r-s} {\widetilde{W}}^{(s)}_{-p}|{\varvec{\theta }}\rangle \quad \text {mod}\ {\mathsf {L}}'_{\varvec{\theta }}\\&\quad =\sum _{s=2}^{p+1} \left( {\begin{array}{c}N-s\\ N-r\end{array}}\right) (-a/N)^{r-s} \sum _{t=2}^s \left( {\begin{array}{c}N-t\\ N-s\end{array}}\right) \left( a/N\right) ^{s-t} W^{(t)}_{-p}|{\varvec{\theta }}\rangle \quad \text {mod}\ {\mathsf {L}}'_{\varvec{\theta }}. \end{aligned} \end{aligned}$$
(99)

Since both hand sides of the relation are written in terms of elements of \(W({\mathfrak {s}}{\mathfrak {l}}_N)\) subalgebra, it can be considered as an exact relation in \(W({\mathfrak {s}}{\mathfrak {l}}_N)\)-submodule \({{\mathsf {L}}}_{\varvec{\theta }}\). After summation over s and changing summation index t to s, we finally get

$$\begin{aligned}&\left( W^{(r)}_{-p}+(-1)^{r+p} \sum _{s=2}^{p+1} {N-s\atopwithdelims ()r-s} {r-s-1\atopwithdelims ()p-s+1} \left( \frac{a}{N}\right) ^{r-s} W^{(s)}_{-p}\right) |{\varvec{\theta }}\rangle =0, \nonumber \\&\qquad 2\le p+1<r\le N. \end{aligned}$$
(100)

Null vectors and fusion rules for completely degenerate fields

This appendix uses a free-fermionic realization of the extension of \(W_N=W({\mathfrak {s}}{\mathfrak {l}}_N)\) to \(W({\mathfrak {g}}{\mathfrak {l}}_N)\). It is convenient since the fermionic fields realize completely degenerate fields for \(W({\mathfrak {g}}{\mathfrak {l}}_N)\) and their properties can be studied easily.

The algebra of N-component free-fermionic fields is generated by \(\psi ^+_\alpha \left( z\right) \), \(\psi ^-_\alpha \left( w\right) \), \(\alpha =1, \ldots , N\), with the standard singular part of the OPEs:

$$\begin{aligned} \psi ^+_\alpha \left( z\right) \psi ^-_\beta \left( w\right) \sim \frac{\delta _{\alpha ,\beta }}{z-w}, \quad \psi ^+_\alpha \left( z\right) \psi ^+_\beta \left( w\right) \sim 0,\quad \psi ^-_\alpha \left( z\right) \psi ^-_\beta \left( w\right) \sim 0. \end{aligned}$$
(101)

The \(W({\mathfrak {g}}{\mathfrak {l}}_N)\)-algebra is a subalgebra of the free-fermionic algebra generated by the fields

$$\begin{aligned} {\hat{W}}^{(k)}\left( z\right) =\sum _{\alpha =1}^N \begin{array}{c} \circ \\ \circ \end{array}\partial ^{k-1}\psi ^+_\alpha \left( z\right) \psi ^-_\alpha \left( z\right) \begin{array}{c} \circ \\ \circ \end{array}, \quad k=1,\ldots ,N, \end{aligned}$$
(102)

where \(\begin{array}{c} \circ \\ \circ \end{array}\ \begin{array}{c} \circ \\ \circ \end{array}\) denotes fermionic normal ordering (moving positive fermionic modes to the right). It is convenient to extend this definition to all integer \(k>0\). Using the bosonization formulas \(\psi ^\pm _\alpha \left( z\right) ={:\exp ({\pm i\phi _\alpha \left( z\right) }):}\), \(\alpha =1,\ldots ,N\), we get a free-boson realization of \({\hat{W}}^{(k)}\left( z\right) \) as differential polynomials in bosonic currents \({{\tilde{J}}}_\alpha \left( z\right) =i \partial \phi _\alpha \left( z\right) \):

$$\begin{aligned} {\hat{W}}^{(k)}\left( z\right) =\frac{1}{k}\sum _{\alpha =1}^N:\partial ^{k} e^{i\phi _\alpha \left( z\right) }\cdot e^{-i\phi _\alpha \left( z\right) }:. \end{aligned}$$
(103)

This free-boson realization of the currents \({\hat{W}}^{(k)}(z)\) does not coincide with the currents \({\widetilde{W}}^{(k)}\left( z\right) \) given by the formula (92) of “Appendix A”, but they generate the same algebra (a proof of this fact for fermionic realization (102) of generators of \(W({\mathfrak {g}}{\mathfrak {l}}_N)\) can be found in e.g. [8, the argument after Eq. (2.10)]). A similar fermionic realization of \(W({\mathfrak {g}}{\mathfrak {l}}_N)\) was used in [28].

The OPE

$$\begin{aligned} {\hat{W}}^{(k)}\left( z\right) \psi ^+_\alpha \left( w\right) \sim \frac{\partial ^{k-1}\psi ^+_\alpha \left( w\right) }{z-w} \end{aligned}$$
(104)

means that

$$\begin{aligned} {\hat{W}}^{(k)}_{1-k}\left| \psi ^+_\alpha \right\rangle = L_{-1}^{k-1}\left| \psi ^+_\alpha \right\rangle ,\quad {\hat{W}}^{(k)}_{m}|\psi ^+_\alpha \rangle =0,\quad m>1-k, \end{aligned}$$
(105)

which gives us the list of convenient null vectors for the degenerate fields \(\psi ^+_\alpha \left( z\right) \). (They can also be rewritten in terms of standard generators.) Note that the OPEs (104) are the same for all \(\alpha \) and, in fact, give the OPEs of the \(W_N\)-algebra currents with the completely degenerate fields.

To find the fusion rules for \(\psi ^+_\alpha \left( z\right) \), consider the conformal block

$$\begin{aligned} \varOmega ^{(k)}_{\alpha }\left( z\right) =\left\langle \varvec{\theta }_\infty \right| {\hat{W}}^{(k)}\left( z\right) \psi ^+_\alpha \left( 1\right) \left| {{\varvec{\theta }}}_0\right\rangle . \end{aligned}$$
(106)

Since

$$\begin{aligned} \left\langle {\varvec{\theta }}_\infty \right| \psi ^+_\alpha \left( t\right) \left| {{\varvec{\theta }}}_0\right\rangle =t^{\varDelta _{{\varvec{\theta }}_\infty }-\varDelta _{{\varvec{\theta }}_0}-\varDelta (\psi _\alpha )}=t^{\frac{1}{2}\left( {\varvec{\theta }}_\infty ^2-{\varvec{\theta }}_0^2-1\right) }, \end{aligned}$$
(107)

where \(\varDelta (\psi _\alpha )=1/2\) is the conformal dimension of the field \(\psi ^+_\alpha \left( t\right) \), we have

$$\begin{aligned} \left\langle {\varvec{\theta }}_\infty \right| \partial ^{k-1}\psi ^+_\alpha \left( 1\right) \left| {{\varvec{\theta }}}_0\right\rangle = \bigl [\tfrac{{\varvec{\theta }}_\infty ^2-{\varvec{\theta }}_0^2-1}{2}\bigr ]_{k-1}=:A_k, \end{aligned}$$
(108)

where \(\left[ x\right] _k=x\left( x-1\right) \cdots \left( x-k+1\right) \) denotes the falling factorial. This fixes the singular part of \(\varOmega ^{(k)}_{\alpha }\left( z\right) \) near \(z=1\) because of (104):

$$\begin{aligned} \varOmega ^{(k)}_{\alpha }\left( z\right) =\frac{A_k}{z-1}+O\left( 1\right) \quad \text {as } z\rightarrow 1. \end{aligned}$$
(109)

In order to compute the asymptotics of \(\varOmega ^{(k)}_{\alpha }\left( z\right) \) near \(z=0\) and \(z=\infty \), one may use the mode expansion

$$\begin{aligned} {\hat{W}}^{(k)}\left( z\right) =\sum _{n\in {\mathbb {Z}}} \frac{{\hat{W}}^{(k)}_n}{z^{n+k}}, \end{aligned}$$

considered for \(|z|<1\) and \(|z|>1\), respectively. It gives the asymptotics

$$\begin{aligned} \varOmega ^{(k)}_{\alpha }(z)= & {} \frac{w_k}{z^k}+\frac{c_{k-1}}{z^{k-1}} +\cdots +\frac{c_1}{z}+O\left( 1\right) \quad \text {as } z\rightarrow 0, \end{aligned}$$
(110)
$$\begin{aligned} \varOmega ^{(k)}_{\alpha }(z)= & {} \frac{w'_k}{z^k}+O\left( z^{-k-1}\right) \quad \text {as } z\rightarrow \infty , \end{aligned}$$
(111)

where \(w_k\) and \(w'_k\) are the eigenvalues \(w_k=\frac{1}{k} \sum _\alpha {[\theta _{0}^{(\alpha )}]}_k\) and \(w_k'=\frac{1}{k} \sum _\alpha {[\theta _{\infty }^{(\alpha )}]}_k\) of \({\hat{W}}^{(k)}_{0}\) acting on the two vacua.Footnote 4 Now from the asymptotics (109)–(111) of \(\varOmega ^{(k)}_{\alpha }(z)\) near 0, 1 and \(\infty \) follows an exact formula

$$\begin{aligned} \varOmega ^{(k)}_{\alpha }\left( z\right) =\frac{w_k}{z^k}+\frac{c_{k-1}}{z^{k-1}}+\ldots +\frac{c_1}{z}+\frac{A_k}{z-1}, \end{aligned}$$
(112)

where

$$\begin{aligned} c_1=\cdots =c_{k-1}=-A_k, \quad w_k+A_k=w'_k. \end{aligned}$$
(113)

The equations \(w_k+A_k=w'_k\), rewritten explicitly as

$$\begin{aligned} \sum _{\alpha =1}^N{[\theta _{\infty }^{(\alpha )}]}_k- k\bigl [\tfrac{{\varvec{\theta }}_\infty ^2-{\varvec{\theta }}_0^2-1}{2}\bigr ]_{k-1} -\sum _{\alpha =1}^N{[\theta _{0}^{(\alpha )}]}_k=0, \end{aligned}$$
(114)

give restrictions on the possible values of \({\varvec{\theta }}_\infty \) in terms of \({\varvec{\theta }}_0\) (fusion rules). Indeed, using the identity \(\left[ x+1\right] _k-\left[ x\right] _k=k\left[ x\right] _{k-1}\), rewrite (114) as

$$\begin{aligned} \sum _{\alpha =0}^N\left[ x_\alpha \right] _k= \sum _{\alpha =0}^N\left[ y_\alpha \right] _k, \end{aligned}$$
(115)

where \(k=1,2,\ldots \) and

$$\begin{aligned} x_{\alpha }= & {} \theta _{\infty }^{(\alpha )}, \quad y_{\alpha }=\theta _{0}^{(\alpha )}, \quad \alpha >0 ,\nonumber \\ x_0= & {} \tfrac{1}{2}\left( {\varvec{\theta }_\infty ^2-\varvec{\theta }_0^2-1}\right) , \quad y_0=\tfrac{1}{2}\left( {\varvec{\theta }_\infty ^2-\varvec{\theta }_0^2+1}\right) . \end{aligned}$$
(116)

The equations (115) require the coincidence of all symmetric polynomials in \(N+1\) variables on two sets: \(X=\{x_0,x_1,\ldots ,x_N\}\) and \(Y=\{y_0,y_1,\ldots ,y_N\}\). This is possible only if these two sets coincide. Since \(x_0\ne y_0\), it means that there exist \(\alpha ',\alpha ''>0\) such that

$$\begin{aligned} \theta _{\infty }^{(\alpha '')}=\tfrac{1}{2}\left( {\varvec{\theta }_\infty ^2 -\varvec{\theta }_0^2+1}\right) ,\quad \theta _{0}^{(\alpha ')}= \tfrac{1}{2}\left( {\varvec{\theta }_\infty ^2-\varvec{\theta }_0^2-1}\right) , \end{aligned}$$
(117)

and the sets formed by all the other \(\theta \)’s coincide. We immediately deduce from these equations that

$$\begin{aligned} \theta _{\infty }^{(\alpha '')}=\theta _{0}^{(\alpha ')}+1. \end{aligned}$$
(118)

Since the variables in the sets X and Y are not independent, one also has to check consistency of the obtained solution; indeed,

$$\begin{aligned} \theta _{0}^{(\alpha ')}=\tfrac{1}{2}\bigl ((\theta _{0}^{(\alpha ')}+1)^2 -(\theta _{0}^{(\alpha ')})^2-1\bigr ). \end{aligned}$$
(119)

Finally, let us recall that the \(W({\mathfrak {g}}{\mathfrak {l}}_N)\)-modules generated from \(\left| {\varvec{\theta }}\right\rangle \) and \(\left| {\varvec{\theta }}'\right\rangle \) are isomorphic if the components of \({\varvec{\theta }}'\) are obtained from those of \({\varvec{\theta }}\) by a permutation. From this point of view, the fusion rules (118) can be rewritten as N possible channels (labeled by \(\alpha =1,\ldots ,N\)) of changing \({\varvec{\theta }}_0\) to obtain \({\varvec{\theta }}_\infty \):

$$\begin{aligned} \theta _{\infty }^{(\alpha )}=\theta _{0}^{(\alpha )}+1, \quad \theta _{\infty }^{(\beta )}=\theta _{0}^{(\beta )}, \quad \beta \ne \alpha . \end{aligned}$$
(120)

Moreover, each of these fusion channels is realized by the fusion with \(\psi ^+_\alpha \left( z\right) \), \(\alpha =1,\ldots ,N\). This claim becomes clear in the bosonized picture, where

$$\begin{aligned} \psi ^+_\alpha \left( z\right) =\; :e^{i\phi _\alpha \left( z\right) }:,\quad |{\varvec{\theta }}_0\rangle =\; :e^{i\left( {\varvec{\theta }}_0,\varvec{\phi }\left( 0\right) \right) }:|\varvec{0}\rangle . \end{aligned}$$
(121)

Returning to \(W_N=W({\mathfrak {s}}{\mathfrak {l}}_N)\), we introduce the bosonic field \(\phi \left( z\right) =N^{-1} \sum _{\alpha =1}^N \phi _\alpha \left( z\right) \) and correct the fermionic fields by \(:\exp i\phi \left( z\right) :\) to obtain the fields

$$\begin{aligned} \psi _\alpha \left( z\right) =\; :e^{-i \phi \left( z\right) } \psi ^+_\alpha \left( z\right) :,\quad {\bar{\psi }}_\alpha \left( z\right) =\; :e^{i \phi \left( z\right) } \psi ^-_\alpha \left( z\right) :. \end{aligned}$$
(122)

They have the following fusion rules:

$$\begin{aligned}&\left\langle \varvec{\theta }_\infty \right| \psi _\alpha \left( z\right) \left| \varvec{\theta }_0\right\rangle \ne 0 \quad \text {if and only if}\quad \varvec{\theta }_\infty = \varvec{\theta }_0 +\varvec{h}_\alpha , \end{aligned}$$
(123)
$$\begin{aligned}&\left\langle \varvec{\theta }_\infty \right| {\bar{\psi }}_\alpha \left( z\right) \left| \varvec{\theta }_0\right\rangle \ne 0 \quad \text {if and only if}\quad \varvec{\theta }_\infty = \varvec{\theta }_0 -\varvec{h}_\alpha , \end{aligned}$$
(124)

where \(h_\alpha \), \(\alpha =1,\ldots ,N\), are the weights of the first fundamental representations of \({\mathfrak {s}}{\mathfrak {l}}_N\), with components \(h_\alpha ^{(s)}=\delta _{\alpha ,s}-1/N\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrylenko, P., Iorgov, N. & Lisovyy, O. Higher-rank isomonodromic deformations and W-algebras. Lett Math Phys 110, 327–364 (2020). https://doi.org/10.1007/s11005-019-01207-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01207-6

Keywords

Mathematics Subject Classification

Navigation