Skip to main content
Log in

Rogue waves in the nonlocal \({\mathcal {PT}}\)-symmetric nonlinear Schrödinger equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Rogue waves in the nonlocal \({\mathcal {PT}}\)-symmetric nonlinear Schrödinger (NLS) equation are studied by Darboux transformation. Three types of rogue waves are derived, and their explicit expressions in terms of Schur polynomials are presented. These rogue waves show a much wider variety than those in the local NLS equation. For instance, the polynomial degrees of their denominators can be not only \(n(n+1)\), but also \(n(n-1)+1\) and \(n^2\), where n is an arbitrary positive integer. Dynamics of these rogue waves is also examined. It is shown that these rogue waves can be bounded for all space and time or develop collapsing singularities, depending on their types as well as values of their free parameters. In addition, the solution dynamics exhibits rich patterns, most of which have no counterparts in the local NLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  ADS  MATH  Google Scholar 

  2. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  4. Peregrine, D.H.: Water waves, nonlinear Schrodinger equations and their solutions. J. Aust. Math. Soc. B 25, 16–43 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrodinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  ADS  Google Scholar 

  6. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–58 (2010)

    Article  Google Scholar 

  7. Ankiewicz, A., Clarkson, P.A., Akhmediev, N.: Rogue waves, rational solutions, the patterns of their zeros and integral relations. J. Phys. A 43, 122002 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth Syst. Sci. 11, 667–72 (2011)

    Article  ADS  Google Scholar 

  9. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)

    Article  ADS  MATH  Google Scholar 

  10. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrodinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  ADS  Google Scholar 

  11. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrodinger equation. Proc. R. Soc. Lond. A 468, 1716–1740 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation. Nonlinearity 26, R93–R125 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Xu, S., He, J., Wang, L.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A 44, 305203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, B.L., Ling, L.M., Liu, Q.P.: High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.: Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013)

    Article  ADS  Google Scholar 

  16. Ohta, Y., Yang, J.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Article  ADS  Google Scholar 

  17. Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A 46, 105202 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ankiewicz, A., Akhmediev, N., Soto-Crespo, J.M.: Discrete rogue waves of the Ablowitz–Ladik and Hirota equations. Phys. Rev. E 82, 026602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ohta, Y., Yang, J.: General rogue waves in the focusing and defocusing Ablowitz–Ladik equations. J. Phys. A 47, 255201 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Article  ADS  Google Scholar 

  22. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  ADS  Google Scholar 

  23. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Article  ADS  Google Scholar 

  24. Priya, N.V., Senthilvelan, M., Lakshmanan, M.: Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system. Phys. Rev. E 88, 022918 (2013)

    Article  ADS  Google Scholar 

  25. Mu, G., Qin, Z., Grimshaw, R.: Dynamics of rogue waves on a multi-soliton background in a vector nonlinear Schrödinger equation. SIAM J. Appl. Math. 75, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mu, G., Qin, Z.: Dynamic patterns of high-order rogue waves for Sasa–Satsuma equation. Nonlinear Anal. Real World Appl. 31, 179–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ling, L.: The algebraic representation for high order solution of Sasa–Satsuma equation. Discrete Contin. Dyn. Syst. Ser. B 9, 1975–2010 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ling, L.M., Feng, B.F., Zhu, Z.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Phys. D 327, 13–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Degasperis, A., Lombardo, S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)

    Article  ADS  Google Scholar 

  30. Degasperis, A., Lombardo, S.: Integrability in action: solitons, instability and rogue waves. In: Onorato, M., Resitori, S., Baronio, F. (eds.) Rogue and Shock Waves in Nonlinear Dispersive Media, Lecture Notes in Physics, vol. 926, pp. 23–53. Springer, Cham (2016)

    Chapter  Google Scholar 

  31. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Article  Google Scholar 

  32. Frisquet, B., Kibler, B., Morin, P., Baronio, F., Conforti, M., Millot, G., Wabnitz, S.: Optical dark rogue wave. Sci. Rep. 6, 20785 (2016)

    Article  ADS  Google Scholar 

  33. Baronio, F., Frisquet, B., Chen, S., Millot, G., Wabnitz, S., Kibler, B.: Observation of a group of dark rogue waves in a telecommunication optical fiber. Phys. Rev. A 97, 013852 (2018)

    Article  ADS  Google Scholar 

  34. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  ADS  Google Scholar 

  35. Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)

    Article  ADS  Google Scholar 

  36. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  ADS  Google Scholar 

  37. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation. Nonlinearity 29, 915–946 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Wen, X.Y., Yan, Z., Yang, Y.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. Huang, X., Ling, L.M.: Soliton solutions for the nonlocal nonlinear Schrodinger equation. Eur. Phys. J. Plus 131, 148 (2016)

    Article  ADS  Google Scholar 

  40. Gerdjikov, V.S., Saxena, A.: Complete integrability of nonlocal nonlinear Schrödinger equation. J. Math. Phys. 58, 013502 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \({\cal{PT}}\)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Article  ADS  Google Scholar 

  42. Gadzhimuradov, T.A., Agalarov, A.M.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Article  ADS  Google Scholar 

  43. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete \({\cal{P}}{\cal{T}}\) symmetric model. Phys. Rev. E 90, 032912 (2014)

    Article  ADS  Google Scholar 

  44. Yan, Z.: Integrable \({\cal{PT}}\)-symmetric local and nonlocal vector nonlinear Schroinger equations: a unified twoparameter model. Appl. Math. Lett. 47, 61–68 (2015)

    Article  MathSciNet  Google Scholar 

  45. Khara, A., Saxena, A.: Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations. J. Math. Phys. 56, 032104 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Song, C.Q., Xiao, D.M., Zhu, Z.N.: A general integrable nonlocal coupled nonlinear Schrödinger equation. arXiv:1505.05311 [nlin.SI] (2015)

  47. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Lou, S.Y.: Alice–Bob systems, \(P_s\)-\(T_d\)-\(C\) principles and multi-soliton solutions, arXiv:1603.03975 [nlin.SI] (2016)

  49. Lou, S.Y., Huang, F.: Alice–Bob physics: coherent solutions of nonlocal KdV systems. Sci. Rep. 7, 869 (2017)

    Article  ADS  Google Scholar 

  50. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, Z.X., Chow, K.W.: Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation. Appl. Math. Lett. 56, 72–77 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  53. Zhou, Z.X.: Darboux transformations and global explicit solutions for nonlocal Davey-Stewartson I equation. Stud. Appl. Math. 141, 186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Rao, J.G., Zhang, Y.S., Fokas, A.S., He, J.S.: Rogue waves of the nonlocal Davey–Stewartson I equation. Nonlinearity 31, 4090 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699–708 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  57. Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 453, 973–984 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ma, L.Y., Shen, S.F., Zhu, Z.N.: Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation. J. Math. Phys. 58, 103501 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Ablowitz, M.J., Feng, B.F., Luo, X.D., Musslimani, Z.H.: Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions. Stud. Appl. Math. 141, 267 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yang, B., Chen, Y.: Dynamics of rogue waves in the partially \({\cal{P}}{\cal{T}}\)-symmetric nonlocal Davey–Stewartson systems, arXiv:1710.07061 [math-ph] (2017)

  61. Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140, 178 (2018). https://doi.org/10.1111/sapm.12195

    Article  MathSciNet  MATH  Google Scholar 

  62. Salle, M.A., Matveev, V.B.: Darboux transformations and solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  63. Cieslinski, J.L.: Algebraic construction of the Darboux matrix revisited. J. Phys. A 42, 404003 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  65. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons. Plenum, New York (1984)

    MATH  Google Scholar 

  66. Yang, J.: Nonlinear Waves in Integrable and Non integrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  67. Bian, D., Guo, B.L., Ling, L.M.: High-order soliton solution of Landau–Lifshitz equation. Stud. Appl. Math. 134, 181–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Benetazzo, A., Ardhuin, F., Bergamasco, F., Cavaleri, L., Guimaraes, P.V., Schwendeman, M., Sclavo, M., Thomson, J., Torsello, A.: On the shape and likelihood of oceanic rogue waves. Sci. Rep. 7, 8276 (2017)

    Article  ADS  Google Scholar 

  69. Mancic, A., Baronio, F., Hadzievski, L.J., Wabnitz, S., Maluckov, A.: Statistics of vector Manakov rogue waves. Phys. Rev. E 98, 012209 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-12-1-0244 and the National Science Foundation under award number DMS-1616122. The work of B.Y. is supported by a visiting-student scholarship from the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianke Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Yang, J. Rogue waves in the nonlocal \({\mathcal {PT}}\)-symmetric nonlinear Schrödinger equation. Lett Math Phys 109, 945–973 (2019). https://doi.org/10.1007/s11005-018-1133-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1133-5

Keywords

Mathematics Subject Classification

Navigation