Skip to main content
Log in

Segal–Bargmann transform: the q-deformation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give identifications of the q-deformed Segal–Bargmann transform and define the Segal–Bargmann transform on mixed q-Gaussian variables. We prove that, when defined on the random matrix model of Śniady for the q-Gaussian variable, the classical Segal–Bargmann transform converges to the q-deformed Segal–Bargmann transform in the large N limit. We also show that the q-deformed Segal–Bargmann transform can be recovered as a limit of a mixture of classical and free Segal–Bargmann transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asai, N., Bożejko, M., Hasebe, T.: Radial bargmann representation for the fock space of type b. J. Math. Phys. 57(2), 021702 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bargmann, V.: Remarks on a Hilbert space of analytic functions. Proc. Nat. Acad. Sci. USA 48, 199–204 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Biane, P.: Segal–Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal. 144(1), 232–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biane, P., Lehner, F.: Computation of some examples of Brown’s spectral measure in free probability. Colloq. Math. 90(2), 181–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blitvić, N., Kemp, T.: Wick calculus and the Segal–Bargmann transform for \((q; t)\)-Gaussian spaces. In: Preparation

  7. Bożejko, M., Kümmerer, B., Speicher, R.: \(q\)-Gaussian processes: non-commutative and classical aspects. Commun. Math. Phys. 185(1), 129–154 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bożejko, M., Speicher, R.: An example of a generalized Brownian motion. Commun. Math. Phys. 137(3), 519–531 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bożejko, M., Speicher, R.: Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300(1), 97–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cébron, G.: Free convolution operators and free Hall transform. J. Funct. Anal. 265(11), 2645–2708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donati-Martin, C.: Stochastic integration with respect to \(q\)-Brownian motion. Prob. Theory Relat. Fields 125(1), 77–95 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Driver, B.K., Hall, B.C.: Yang–Mills theory and the Segal–Bargmann transform. Commun. Math. Phys. 201(2), 249–290 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Effros, E.G., Popa, M.: Feynman diagrams and Wick products associated with \(q\)-Fock space. Proc. Natl. Acad. Sci. USA 100(15), 8629–8633 (2003). (electronic)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hall, B.C.: A new form of the Segal–Bargmann transform for Lie groups of compact type. Can. J. Math. 51(4), 816–834 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ho, C.-W.: The two-parameter free unitary segalbargmann transform and its bianegrossmalliavin identification. J. Funct. Anal. 271(12), 3765–3817 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Junge, M., Zeng, Q.: Mixed \(q\)-Gaussian algebras. Preprints arXiv:1505.07852

  17. Kemp, T.: Hypercontractivity in non-commutative holomorphic spaces. Commun. Math. Phys. 259(3), 615–637 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Krȯlak, I.: Wick product for commutation relations connected with Yang–Baxter operators and new constructions of factors. Commun. Math. Phys. 210(3), 685–701 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lust-Piquard, F.: Riesz transforms on deformed fock spaces. Commun. Math. Phys. 205(3), 519–549 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Młotkowski, W.: \(\Lambda \)-Free probability. Infinite Dimens. Anal. Quantum Prob. Relat. Topics 07(01), 27–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ngo, H.Q.: \({\mathbb{P}}\)-Species and the \(q\)-Mehler formula. Sém. Lothar. Combin. 48, B48b (2002). (electronic)

    MathSciNet  MATH  Google Scholar 

  22. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  23. Segal, I.E.: Mathematical problems of relativistic physics, vol. 1960 of with an appendix by George W. Mackey. Lectures in Applied Mathematics (Proceedings of the Summer Seminar, Boulder, Colorado). American Mathematical Society, Providence (1963)

  24. Segal, I.E.: The complex-wave representation of the free boson field. In: Topics in Functional Analysis (Essays Dedicated to M. G. Krein on the Occasion of his 70th Birthday), Vol. 3 of Adv. in Math. Suppl. Stud. Academic Press, New York, pp. 321–343 (1978)

  25. Śniady, P.: Gaussian random matrix models for \(q\)-deformed Gaussian variables. Commun. Math. Phys. 216(3), 515–537 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Speicher, R.: A non-commutative central limit theorem. Math. Z. 209(1), 55–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Speicher, R.: Generalized statistics of macroscopic fields. Lett. Math. Phys. 27(2), 97–104 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Speicher, R., Wysoczański, J.: Mixtures of classical and free independence. Archiv der Math. 107(4), 445–453 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Szabłowski, P.J.: On the \(q\)-Hermite polynomials and their relationship with some other families of orthogonal polynomials. Demonstr. Math. 46(4), 679–708 (2013)

    MathSciNet  MATH  Google Scholar 

  30. van Leeuwen, H., Maassen, H.: A \(q\)-deformation of the Gauss distribution. J. Math. Phys. 36(9), 4743 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially funded by the ERC Advanced Grant “NCDFP” held by Roland Speicher. The second author was funded by the same ERC Advanced Grant “Non-commutative distributions in free probability” (Grant No. 339760). The second author would like to thank Roland Speicher for allowing his stay in Saarbrücken, Germany, so the authors had a chance to collaborate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Wei Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cébron, G., Ho, CW. Segal–Bargmann transform: the q-deformation. Lett Math Phys 108, 1677–1715 (2018). https://doi.org/10.1007/s11005-017-1039-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-1039-7

Navigation