Skip to main content
Log in

String Hypothesis for Spin Chains: A Particle/Hole Democracy

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to integrable \({{\mathfrak{g}\mathfrak{l} (\mathfrak{n} | \mathfrak{m})}}\) spin chains, which allow for formulation of the string hypothesis. Considering the thermodynamic limit of such spin chains, we derive linear functional equations that symmetrically treat holes and particles. The functional equations naturally organize different types of excitations into a pattern equivalent to the one of Y-system, and, not surprisingly, the Y-system can be easily derived from the functional equations. The Y-system is known to contain most of the information about the symmetry of the model, therefore we map the symmetry knowledge directly to the description of string excitations. Our analysis is applicable for highest weight representations which for some choice of the Kac-Dynkin diagram have only one nonzero Dynkin label. This generalizes known results for the AdS/CFT spectral problem and for the Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zamolodchikov A.B.: On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories. Phys. Lett. B253, 391–394 (1991)

    MathSciNet  ADS  Google Scholar 

  2. Gromov, N., Kazakov, V., Vieira, P.: Finite volume spectrum of 2D field theories from hirota dynamics. JHEP 2009(12), 060 (2008). http://xxx.lanl.gov/abs/0812.5091

  3. Gromov, N., Kazakov, V., Vieira, P.: Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory. Phys. Rev. Lett. 103, 131601 (2009). http://xxx.lanl.gov/abs/0901.3753

    Google Scholar 

  4. Zamolodchikov A.B.: Thermodynamic Bethe Ansatz in relativistic models. Scaling three state Potts and Lee-Yang models. Nucl. Phys. B 342, 695–720 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bombardelli, D., Fioravanti, D., Tateo, R.: Thermodynamic Bethe Ansatz for planar AdS/CFT: a proposal. J. Phys. A 42, 375401 (2009). http://xxx.lanl.gov/abs/0902.3930

  6. Gromov, N., Kazakov, V., Kozak, A., Vieira, P.: Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory: TBA and excited states. Lett. Math. Phys. 91, 265–287 (2010). http://xxx.lanl.gov/abs/0902.4458

    Google Scholar 

  7. Arutyunov, G., Frolov, S.: Thermodynamic Bethe Ansatz for the AdS5xS5 mirror model. JHEP 05, 068 (2009). http://xxx.lanl.gov/abs/0903.0141

  8. Saleur, H.: The continuum limit of sl(N|K) integrable super spin chains. Nucl. Phys. B 578, 552–576 (2000). http://xxx.lanl.gov/abs/solv-int/9905007

    Google Scholar 

  9. Essler, F.H.L., Frahm, H., Saleur, H.: Continuum limit of the integrable sl(2|1) 3-\({\bar{3}}\) superspin chain. Nucl. Phys. B 712, 513–572 (2005). http://xxx.lanl.gov/abs/cond-mat/0501197

    Google Scholar 

  10. Candu, C.: Continuum limit of gl(M/N) spin chains. JHEP 1107, 069 (2011). http://xxx.lanl.gov/abs/1012.0050

  11. Cavaglia, A., Fioravanti, D., Tateo, R.: Extended Y-system for the AdS 5/CFT 4 correspondence. Nucl. Phys. B 843, 302–343 (2011). http://xxx.lanl.gov/abs/1005.3016

  12. Gromov, N., Kazakov, V., Tsuboi, Z.: PSU(2,2|4) character of quasiclassical AdS/CFT. JHEP 07, 097 (2010). http://xxx.lanl.gov/abs/1002.3981

  13. Bethe H.: On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain. Z. Phys. 71, 205–226 (1931)

    Article  ADS  Google Scholar 

  14. Faddeev L.D., Takhtajan L.A.: What is the spin of a spin wave?. Phys. Lett. A 85, 375–377 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  15. Faddeev L.D., Takhtajan L.A.: Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model. J. Sov. Math. 24, 241–267 (1984)

    Article  MATH  Google Scholar 

  16. Arutyunov, G., Frolov, S.: String hypothesis for the AdS5xS5 mirror. JHEP 03, 152 (2009). http://xxx.lanl.gov/abs/0901.1417

  17. Takahashi M.: One-dimensional Hubbard model at finite temperature. Prog. Theor. Phys. 47, 69 (1972)

    Article  ADS  Google Scholar 

  18. Zinn-Justin, P.: Quelques applications de l’Ansatz de Bethe. http://xxx.lanl.gov/abs/solv-int/9810007 (in French)

  19. Volin, D.: Quantum integrability and functional equations: applications to the spectral problem of AdS/CFT and two-dimensional sigma models. J. Phys. A 44, 124003 (2011). http://xxx.lanl.gov/abs/1003.4725

  20. Arutyunov, G., Frolov, S.: Simplified TBA equations of the AdS5xS5 mirror model. JHEP 11, 019 (2009). http://xxx.lanl.gov/abs/0907.2647

  21. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Quantum field theories in finite volume: excited state energies. Nucl. Phys. B 489, 487–531 (1997). http://xxx.lanl.gov/abs/hep-th/9607099

  22. Dorey, P., Tateo, R.: Excited states by analytic continuation of TBA equations. Nucl. Phys. B 482, 639–659 (1996). http://xxx.lanl.gov/abs/hep-th/9607167

    Google Scholar 

  23. Destri C., de Vega H.J.: New thermodynamic Bethe ansatz equations without strings. Phys. Rev. Lett. 69, 2313–2317 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Destri, C., De Vega, H.J.: Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories. Nucl. Phys. B 438, 413–454 (1995). http://xxx.lanl.gov/abs/hep-th/9407117

  25. Fioravanti, D., Mariottini, A., Quattrini, E., Ravanini, F.: Excited state Destri-De Vega equation for Sine-Gordon and restricted Sine-Gordon models. Phys. Lett. B 390, 243–251 (1997). http://xxx.lanl.gov/abs/hep-th/9608091

  26. Frappat, L., Sorba, P., Sciarrino, A.: Dictionary on Lie superalgebras. http://xxx.lanl.gov/abs/hep-th/9607161

  27. Kulish P.P., Reshetikhin N.Y.: Diagonalization of Gl(N) invariant transfer matrices and quantum N wave system (Lee model). J. Phys. A16, L591–L596 (1983)

    MathSciNet  ADS  Google Scholar 

  28. Ragoucy, E., Satta, G.: Analytical Bethe Ansatz for closed and open gl(M|N) super-spin chains in arbitrary representations and for any Dynkin diagram. JHEP 09, 001 (2007). http://xxx.lanl.gov/abs/0706.3327

  29. Woynarovich F.: Low-energy excited states in a Hubbard chain with on-site attraction. J. Phys. C: Solid State Phys. 16, 6593 (1983)

    Article  ADS  Google Scholar 

  30. Bares P.-A., Carmelo J.M.P., Ferrer J., Horsch P.: Charge-spin recombination in the one-dimensional supersymmetric t-J model. Phys. Rev. B 46, 14624–14654 (1992)

    Article  ADS  Google Scholar 

  31. Tsuboi Z.: Analytic Bethe Ansatz and functional equations associated with any simple root systems of the Lie superalgebra SL(r+1|s+1). Physica A 252, 565–585 (1998)

    Article  MathSciNet  Google Scholar 

  32. Gohmann, F., Seel, A.: A note on the Bethe ansatz solution of the supersymmetric t-J model. http://xxx.lanl.gov/abs/cond-mat/0309138

  33. Pronko, G.P., Stroganov, Y.G.: Bethe equations “on the Wrong Side of Equator”. J. Phys. A 32, 2333–2340 (1999). http://xxx.lanl.gov/abs/hep-th/9808153

  34. Gromov, N., Vieira, P.: Complete 1-loop test of AdS/CFT. JHEP 04, 046 (2008). http://xxx.lanl.gov/abs/0709.3487

  35. Bazhanov, V.V., Tsuboi, Z.: Baxter’s Q-operators for supersymmetric spin chains. Nucl. Phys. B 805, 451–516 (2008). http://xxx.lanl.gov/abs/0805.4274

    Google Scholar 

  36. Vladimirov A.A.: Proof of the invariance of the bethe-ansatz solutions under complex conjugation. Theor. Math. Phys. 66, 102–105 (1986). doi:10.1007/BF01028945

    Article  Google Scholar 

  37. Freyhult, L., Rej, A., Zieme, S.: From weak coupling to spinning strings. JHEP 02, 050 (2010). http://xxx.lanl.gov/abs/0911.2458

  38. Zabrodin, A.: Backlund transformations for difference Hirota equation and supersymmetric Bethe ansatz. http://xxx.lanl.gov/abs/0705.4006

  39. Cheng, S.-J., Lam, N., Zhang, R.: Character formula for infinite dimensional unitarizable modules of the general linear superalgebra. J. Algebra 273, 780 (2004). http://xxx.lanl.gov/abs/math/0301183

  40. Jakobsen, H.P.: The full set of unitarizable highest weight modules of basic classical lie superalgebras. Memoirs of A.M.S. no. 532 (1994)

  41. Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. Progress in Mathematics, vol. 40. Birkhäuser, Boston (1983)

  42. Dobrev V.K., Petkova V.B.: All positive energy unitary irreducible representations of extended conformal supersymmetry. Phys. Lett. B 162, 127–132 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  43. Derkachov, S.E., Manashov, A.N.: Factorization of R-matrix and Baxter Q-operators for generic sl(N) spin chains. J. Phys. A 42, 075204 (2009). http://xxx.lanl.gov/abs/0809.2050

  44. Kazakov, V., Leurent, S., Tsuboi, Z.: Baxter’s Q-operators and operatorial Backlund flow for quantum (super)-spin chains. Commun. Math. Phys. 311, 787–814 (2012). http://xxx.lanl.gov/abs/1010.4022

    Google Scholar 

  45. Bazhanov, V.V., Frassek, R., Lukowski, T., Meneghelli, C., Staudacher, M.: Baxter Q-operators and representations of Yangians. Nucl. Phys. B 850, 148–174 (2011). http://xxx.lanl.gov/abs/1010.3699

  46. Gaiotto, D., Maldacena, J., Sever, A., Vieira, P.: Bootstrapping null polygon Wilson loops. JHEP 1103, 092 (2011). http://xxx.lanl.gov/abs/1010.5009

  47. Basso, B.: Exciting the GKP string at any coupling. Nucl. Phys. B 857, 254–334 (2012). http://xxx.lanl.gov/abs/1010.5237

  48. Kirrilov A.: Completeness of states of the generalised heisenberg magnet. J. Math. Sci. 36, 115–128 (1987)

    Article  Google Scholar 

  49. Kirillov A.: Combinatorial identities, and completeness of eigenstates of the heisenberg magnet. J. Math. Sci. 30, 2298–2310 (1985). doi:10.1007/BF02105347

    Article  Google Scholar 

  50. Kerov S., Kirillov A., Reshetikhin N.: Combinatorics, the bethe ansatz and representations of the symmetric group. J. Sov. Math. 41, 916–924 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Isler, K., Paranjape, M.B.: Violations of the string hypothesis in the solutions of the Bethe ansatz equations in the XXX Heisenberg model. Phys. Lett. B 319, 209–214 (1993). http://xxx.lanl.gov/abs/hep-th/9304078

  52. Ilakovac, A., Kolanovic, M., Pallua, S., Prester, P.: Violation of the string hypothesis and Heisenberg XXZ spin chain. Phys. Rev. B 60, 7271 (1999). http://xxx.lanl.gov/abs/hep-th/9907103

  53. Bargheer, T., Beisert, N., Gromov, N.: Quantum stability for the Heisenberg ferromagnet. New J. Phys. 10, 103023 (2008). http://xxx.lanl.gov/abs/0804.0324

  54. Antipov A., Komarov I.: The isotropic heisenberg chain of arbitrary spin by direct solution of the baxter equation. Physica D 221, 101–109 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Volin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volin, D. String Hypothesis for Spin Chains: A Particle/Hole Democracy. Lett Math Phys 102, 1–29 (2012). https://doi.org/10.1007/s11005-012-0570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0570-9

Mathematics Subject Classification

Keywords

Navigation