Skip to main content
Log in

Action Integrals and Infinitesimal Characters

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let G be a reductive Lie group and \({{\mathcal O}}\) the coadjoint orbit of a hyperbolic element of \({{\frak g}^*}\) . The unitary irreducible representation of G associated with \({{\mathcal O}}\) by the orbit method is denoted by π. We give geometric interpretations in terms of concepts related to \({{\mathcal O}}\) of the constant π(g), for \({g \in Z(G)}\) . We also offer a description of the invariant π(g) in terms of action integrals and Berry phases. In the spirit of the orbit method, we geometrically interpret the infinitesimal character of the differential representation of π.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R., Marsden J.E.: Foundations of Mechanics. Benjamin/Cummings Publishing Co., London (1985)

    Google Scholar 

  2. Kirillov A.A.: Elements of the Theory of Representations. Springer, Berlin (1976)

    MATH  Google Scholar 

  3. Kirillov A.A.: Lectures on the Orbit Method. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  4. Knapp A.W.: Representation Theory of Semisimple Groups: an Overwiew Based on Examples. Princeton University Press, Princeton (2001)

    Google Scholar 

  5. Knapp A.W.: Lie Groups Beyond an Introduction. Progr. Math., vol. 140. Birkhäuser, Boston (2005)

    Google Scholar 

  6. Knapp, W.A., Trapa, P.E.: Representations of semisimple Lie groups. In: Adams, J., Vogan, D. (eds.) Representation Theory of Lie Groups. IAS/Park City Mathematics Series, vol. 8, pp. 177–238. American Mathematical Society, Providence (1999)

  7. Lalonde, T., McDuff, D., Polterovich, L.: On flux conjectures. In: CRM Proceedings and Lecture Notes, vol. 15, pp. 69–85. American Mathematical Society, Providence (1998)

  8. Kostant, B.: Quantization and unitary representations. In: Modern Analysis and Applications. Lecture Notes in Mathematics, vol. 170, pp. 87–207. Springer, Berlin (1970)

  9. McDuff D., Salamon D.: Introduction to Symplectic Topology. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  10. Śniatycki J.E.: Geometric Quantization and Quantum Mechanics. Springer, New York (1980)

    MATH  Google Scholar 

  11. Viña A.: Symplectic action around loops in Ham(M). Geom. Dedicata 109, 31–49 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Vogan D.: Unitary Representations of Reductive Lie Groups. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  13. Vogan, D.: The orbit method and unitary representations. In Algebraic and Analytic Methods in Representation Theory (Sonderborg, 1994). Perspectives in Mathematics, vol. 17, pp. 243–339. Academic Press, San Diego (1997)

  14. Vogan, D.: The orbit method of coadjoint orbits for real reductive groups. In: Adams, J., Vogan, D. (eds.) Representation Theory of Lie Groups. IAS/Park City Mathematics Series, vol. 8, pp. 177–238. American Mathematical Society, Providence (1999)

  15. Weinstein A.: Cohomology of symplectomorphism groups and critical values of Hamiltonians. Math. Z. 201, 75–82 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Weinstein A.: Connections of Berry and Hannay type for moving Lagrangian submanifolds. Adv. Math. 82, 133–159 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Woodhouse N.M.J.: Geometric Quantization. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Viña.

Additional information

This work was partially supported by Ministerio de Educación y Ciencia, grant MAT2007-65097-C02-02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viña, A. Action Integrals and Infinitesimal Characters. Lett Math Phys 91, 241–264 (2010). https://doi.org/10.1007/s11005-010-0372-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0372-x

Mathematics Subject Classification (2000)

Keywords

Navigation