Skip to main content
Log in

Solutions of the Classical Yang–Baxter Equation and Noncommutative Deformations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that given a finite-dimensional real Lie algebra \({\mathcal{G}}\) acting on a smooth manifold P then, for any solution of the classical Yang–Baxter equation on \({\mathcal{G}}\) , there is a canonical Poisson tensor on P and an associated canonical torsion-free and flat contravariant connection. Moreover, we prove that the metacurvature of this contravariant connection vanishes if the isotropy Lie subalgebras of the action are trivial. Those results permit to get a large class of smooth manifolds satisfying the necessary conditions, introduced by Eli Hawkins, to the existence of noncommutative deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson C. and Gordon C. (1988). Kähler and symplectic structures on nilmanifolds. Topology 27(4): 513–518

    Article  MATH  MathSciNet  Google Scholar 

  2. Bordemann M., Medina A. and Ouadfel A. (1993). Le groupe affine comme variété symplectique. Tôhoku Math. J. 45: 423–436

    Article  MATH  MathSciNet  Google Scholar 

  3. Boucetta M. (2001). Compatibilité des structures pseudo-riemanniennes et des structures de Poisson. C. R. Acad. Sci. Paris, t. 333, Série I: 763–768

    MathSciNet  Google Scholar 

  4. Drinfeld V.G. (1983). On constant quasiclassical solutions of the Yang–Baxter quantum equation. Sov. Math. Dokl. 28: 667–671

    Google Scholar 

  5. Fernandes R.L. (2000). Connections in Poisson Geometry1: holonomy and invariants. J. Differ. Geom. 54: 303–366

    MATH  MathSciNet  Google Scholar 

  6. Gurevich D., Rubtsov V. and Zobin N. (1992). Quantization of Poisson pairs: the R-matix approach. J. Geom. Phys 9: 25–44

    Article  MATH  MathSciNet  Google Scholar 

  7. Hawkins E. (2004). Noncommutative Rigidity. Commun. Math. Phys. 246: 211–235 math.QA/0211203

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Hawkins, E.: The structure of noncommutative deformations, arXiv:math.QA/0504232

  9. Medina A. and Revoy Ph. (1985). Les groupes oscillateurs et leurs réseaux. Manuscripta Math. 52: 81–95

    Article  MATH  MathSciNet  Google Scholar 

  10. Medina, A., Revoy, Ph.: Groupes de Lie à structure symplectique invariante. Symplectic geometry, groupoids and integrable systems. In: “Séminaire Sud Rhodanien”, M.S.R.I., Springer-Verlag, New York, 247–266 (1991)

  11. Milnor J. (1976). Curvature of left invariant metrics on Lie groups. Adv. Math. 21: 283–329

    Article  MathSciNet  Google Scholar 

  12. Reshetikhin N., Voronov A. and Weinstein A. (1996). Semiquantum geometry, algebraic geometry. J. Math. Sci. 82(1): 3255–3267

    Article  MATH  MathSciNet  Google Scholar 

  13. Vaisman, I.: Lecture on the geometry of Poisson manifolds. Prog. Math., vol. 118, Birkhausser, Berlin (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Boucetta.

Additional information

Recherche menée dans le cadre du Programme Thématique d’Appui à la Recherche Scientifique PROTARS III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucetta, M. Solutions of the Classical Yang–Baxter Equation and Noncommutative Deformations. Lett Math Phys 83, 69–81 (2008). https://doi.org/10.1007/s11005-007-0197-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0197-4

Mathematics Subject Classification (2000)

Keywords

Navigation