Skip to main content
Log in

Berezinians, Exterior Powers and Recurrent Sequences

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study power expansions of the characteristic function of a linear operator A in a p|q-dimensional superspace V. We show that traces of exterior powers of A satisfy universal recurrence relations of period q. ‘Underlying’ recurrence relations hold in the Grothendieck ring of representations of GL(V). They are expressed by vanishing of certain Hankel determinants of order q+1 in this ring, which generalizes the vanishing of sufficiently high exterior powers of an ordinary vector space. In particular, this allows to express the Berezinian of an operator as a ratio of two polynomial invariants. We analyze the Cayley–Hamilton identity in a superspace. Using the geometric meaning of the Berezinian we also give a simple formulation of the analog of Cramer’s rule

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezin F.A. Method of second quantization. In: Polivanov M.K. (eds). 2nd edn. Nauka, Moscow (1965) (expanded 1986)

  2. Berezin, F.A.: Laplace–Cazimir operators on Lie supergroups (general theory). Preprint ITEP 77 (1977)

  3. Berezin F.A. Introduction to superanalysis. D. Reidel Publishing, Dordrecht (1987). Expanded translation from the Russian: Introduction to algebra and analysis with anticommuting variables. Palamodov, V.P. (ed.) Moscow State University, Moscow (1983)

  4. Bergvelt M.J., Rabin J.M. (1999). Supercurves, their Jacobians, and super KP equations. Duke. Math. J. 98(1):1–57

    Article  MATH  MathSciNet  Google Scholar 

  5. Bernstein J.N., Leites D.A. (1977). Integral forms and Stokes formula on supermanifolds. Funk. Anal. Pril. 11(1):55–56

    Article  MATH  MathSciNet  Google Scholar 

  6. Connes A., Schwarz A.S. (1997). Matrix Vieta theorem revisited. Lett. Math. Phys. 39(4):349–353

    Article  MATH  MathSciNet  Google Scholar 

  7. Fuchs D.B., Schwarz A.S. (1995). Matrix Vieta theorem. In: Lie groups, Lie algebras E B. Dynkin’s Seminar, vol 169, of Amer. Math. Soc. Transl. Ser. 2. Americal Mathematical Society, Providence RI, pp. 15–22.

  8. Gantmacher F.R. Applications of the theory of matrices. Interscience Publishers, Inc., New York, 1959. The theory of matrices. Vols. 1, 2. Chelsea Publishing Co., New York, 1959

  9. Gelfand I., Gelfand S., Retakh V., Wilson R. (2005). Quasideterminants Adv Math 193(1):56–141 arXiv:math.QA/0208146

    Article  MATH  MathSciNet  Google Scholar 

  10. Gelfand I.M., Retakh V.S. Determinants of matrices over noncommutative rings. Funktsional. Anal. i Prilozhen. 25(2): 13–25 96 (1991)

    Google Scholar 

  11. Kac V.G. (1977). Characters of typical representations of classical Lie superalgebras. Comm. Algebra. 5(8):889–897

    Article  MATH  MathSciNet  Google Scholar 

  12. Kantor I., Trishin I. (1994). On a concept of determinant in the supercase. Comm. Algebra. 22(10):3679–3739

    Article  MATH  MathSciNet  Google Scholar 

  13. Kantor I., Trishin I. (1997). The algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m,n). Comm. Algebra. 25(7):2039–2070

    Article  MATH  MathSciNet  Google Scholar 

  14. Kantor I., Trishin I. (1999). On the Cayley–Hamilton equation in the supercase. Comm. Algebra. 27(1):233–259

    Article  MATH  MathSciNet  Google Scholar 

  15. Macdonald I.G. (1979). Symmetric functions and Hall polynomials. The Clarendon Press, Oxford University Press, New York

    MATH  Google Scholar 

  16. Schmitt, Th.: Some identities for Berezin’s function. In: Seminar analysis, 1981/82, pp. 146–161. Akad. Wiss. DDR, Berlin (1982)

  17. Sergeev A.N. (1982). Invariant polynomial functions on Lie superalgebras. C. R. Acad. Bulgare Sci. 35(5):573–576

    MATH  MathSciNet  Google Scholar 

  18. Sergeev A.N. (1999). The invariant polynomials on simple Lie superalgebras. Represent. Theory. 3:250–280 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  19. Voronov, Th.: Geometric integration theory on supermanifolds, volume 9 of Sov. Sci. Rev. C. Math. Phys. Harwood Academic Publ., 1992

  20. Voronov, Th.: Berezin integral. Berezin volume forms. Berezinian. Differential forms. Exterior algebra. Forms on supermanifolds. Integral forms. In: Concise encyclopedia in supersymmetry and noncommutative structures in mathematics and physics. Kluwer, Dordrecht (2003)

  21. Weyl H. (1997). The classical groups, their invariants and representations 2nd (edn). Princeton University Press, Princeten, NJ (fifteenth printing)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TH. TH. Voronov.

Additional information

To the memory of Felix Alexandrovich Berezin

Mathematics Subject Classification (2000): 15A15, 58A50, 81R99

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khudaverdian, H.M., Voronov, T.T. Berezinians, Exterior Powers and Recurrent Sequences. Lett Math Phys 74, 201–228 (2005). https://doi.org/10.1007/s11005-005-0025-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-005-0025-7

Keywords

Navigation