Skip to main content

Advertisement

Log in

Recycling Technologies for Polyurethane Wastes (A Survey)

  • Published:
Materials Science Aims and scope

The world production of polyurethanes (PU) currently exceeds 18 mln. tons. Moreover, it is expected that, by 2024, it will become greater than 24 mln. tons. We present a survey of works available from the literature and analyzing the methods of recycling of polyurethanes aimed at the reduction of the amount of PU wastes, environmental protection, and prevention of waste dumping in the landfills. Mechanical processing proves to be the oldest and simple method used for the processing of PU wastes. The process of chemical recycling of polyurethane by glycolysis is regarded as the most environmentally friendly and economically competitive method. Glycolysis of polyurethane is a process of chemical depolymerization based on the reaction of transesterification of polyols and glycols in a molecule of urethane. This process makes it possible to destroy the polyurethane matrix and either to release polyol or to generate new recycled polyol. The possibility of application of different glycols and catalysts in the reaction of catalytic transesterification is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. F. M. de Souza, P. K. Kahol, and R. K. Gupta, “Introduction to polyurethane chemistry,” in: R. K. Gupta and P. K. Kahol (editors), Polyurethane Chemistry: Renewable Polyols and Isocyanates, ACS Symposium Series, 1380 (2021), pp. 1–24; DOI:10.1021/bk-2021-1380.ch001.

  2. “The European flexible PU foam market report for 2018,” PU Magazine Int., 16, 206–212 (2019).

  3. N. Gama, B. Godinho, G. Marques, and A. Ferreira, “Recycling of polyurethane scrap via acidolysis,” Chem. Eng. J., 395, 125102 (2020); 10.1016/j.cej.2020.125102.

  4. Y. Deng, R. Dewil, L. Appels, R. Ansart, J. Baeyens, and Q. Kang, “Reviewing the thermo-chemical recycling of waste polyurethane foam,” J. Environment. Manag., 278 (Pt. 1), 111–527 (2021); DOI:https://doi.org/10.1016/j.jenvman.2020.111527.

    Article  CAS  Google Scholar 

  5. “Law of Ukraine. On the main principles (strategy) of the state environmental policy of Ukraine for a period of up to 2030,” Vidom. Verkhov. Rady., No. 16, 70 (2019); https://zakon.rada.gov.ua/laws/show/2697-19#Text.

  6. K. Uhlig, “Wie wird PUR Hergestellt?”, Polyurethan Taschenbuch, Hanser-Verlag, München–Wien (2006).

  7. H. U. Meier-Westhues, K. Danielmaeir, and P. Kruppa, Polyurethanes: Coatings, Adhesives and Sealants, Vincentz Network, Hanover (2019).

  8. V. G. Nuno, A. Ferreira, and A. Barros-Timmons, “Polyurethane foams: past, present, and future,” Materials (Basel), 11(10), 1841 (2018); https://doi.org/10.3390/ma11101841.

    Article  CAS  Google Scholar 

  9. M. Ionescu, “Basic chemistry and technology of polyols for polyurethanes,” in: Smithers Rapra Technology, Vol. 1, Shawbury (2005), pp. 15–32; 10.1515/9783110644104-002.

  10. M. M. A. Nikje, A. B. Garmarudi, and A. B. Idris, “Polyurethane waste reduction and recycling: from bench to pilot scales,” Des. Monomers Polym., 14(5), 395–421 (2011); https://doi.org/10.1163/138577211X587618.

    Article  CAS  Google Scholar 

  11. N. R. Gunawan, M. A. Tessman, A. C. Schreiman, R. Simkovsky, A. A. Samoylov, N. K. Neelakantan, T. A. Bemis, M. D. Burkart, R. S. Pomeroy, and S. P. Mayfield, “Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products,” Biores. Technol. Rep., 11, 100513 (2020); 10.1016/j.biteb.2020.100513.

  12. S. T. McKenna and T. R. Hull, “The fire toxicity of polyurethane foams,” Fire Sci. Rev., 5, 3 (2016); DOI:https://doi.org/10.1186/S40038-016-0012-3.

    Article  Google Scholar 

  13. K. Sałasinska, M. Leszczynska, N. Celinski, P. Kozikowski, K. Kowiorski, and L. Lipinska, “Burning behavior of rigid polyurethane foams with histidine and modified graphene oxide,” Materials (MDPI), 14, No. 5, 1184 (2021); 10.3390/ma14051184.

  14. H. Singh and A. K. Jain, “Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review,” Appl. Polymer. Sci., 111, Issue 2, 1115–1143 (2009); https://doi.org/10.1002/app.2913.

    Article  CAS  Google Scholar 

  15. J. Datta, P. Kopczyńska, and D. Simón, “Thermo-chemical decomposition study of polyurethane elastomer through glycerolysis route with using of crude and refined glycerine as a transesterification,” J. Polym. Environ., 26, 166–174 (2018); 10.1007/s10924-016-0932-y.

  16. V. Santucci and S. Fiore, “Recovery of waste polyurethane from E-waste,” Materials (MDPI), 14, No. 21, 6230 (2021); 10.3390/ma14216230.

  17. A. Sheel and D. Pant, “Chemical depolymerization of polyurethane foams via glycolysis and hydrolysis,” in: Recycling of Polyurethane Foams, Elsevier (2018), pp. 67–75; DOI:https://doi.org/10.1016/B978-0-323-51133-9.00006-1.

  18. J. Scheirs, Polymer Recycling: Science, Technology and Applications, John Wiley and Sons, Chichester (1998).

  19. D. Simón, A. M. Borreguero, A. de Lukas, and J. F. Rodríguez, “Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability,” Waste Manag., 76, 147–171 (2018); 10.1016/j.wasman.2018.03.041.

  20. R. Heiran, A. Ghaderian, A. Reghunadhan, F. Sedaghati, S. Thomas, and A. Haghighi, “Glycolysis: an efficient route for recycling of end of life polyurethane foams,” J. Polym. Res., 28, No. 1, 2–22 (2021); https://doi.org/10.1007/s10965-020-02383-z.

    Article  CAS  Google Scholar 

  21. M. Murai, M. Sanou, T. Fujimoto, and F. Baba, “Glycolysis of rigid polyurethane foam under various reaction conditions,” J. Cell. Plast., 39, No. 1, 15–27 (2003); https://doi.org/10.1177/002195503031021.

    Article  CAS  Google Scholar 

  22. A. Kemona and M. Piotrowska, “Polyurethane recycling and disposal: methods and prospects,” Polymers (MDPI), 12, No. 8, 1752 (2020); 10.3390/polym12081752.

  23. G. Kiss, G. Rusu, F. Peter, I. Tănase, and G. Bandu, “Recovery of flexible polyurethane foam waste for efficient reuse in industrial formulations,” Polymers (MDPI), 12, 1533 (2020); 10.3390/polym12071533.

  24. N. V. Gama, A. Ferreira, and A. Barros-Timmons, “Polyurethane foams: Past, present, and future,” Materials (MDPI), 11, No. 10, 1841 (2018); https://doi.org/10.3390/ma11101841.

  25. M. Biron, Thermoplastics and Thermoplastic Composites, Chapter 7: Plastics Solutions for Practical Problems, William Andrew–Applied Science Publishers, Oxford–Cambridge (2018), pp. 831–984; https://doi.org/10.1016/B978-0-08-102501-7.00007-2.

  26. Solverchem Publications (editor), Polyurethane Coating and Paint Formulations. Encyclopedia (2017); https://www.solverchem. com/hard-books/polyurethane-coatings-and-paints-formulations-encyclopedia.

  27. K. M. Zia, H. N. Bhatti, and I. Ahmad, “Methods for polyurethane and polyurethane composites, recycling and recovery. A review,” React. Funct. Polym., 67, No. 8, 675–692 (2007); https://doi.org/10.1016/j.reactfunctpolym.2007.05.004.

    Article  CAS  Google Scholar 

  28. R. C. Williams and R. P. Lattimer, “Low-temperature pyrolysis products from a polyether based urethane,” J. Anal. Appl. Pyrol., 63, 85–104 (2002); DOI:https://doi.org/10.1016/S0165-2370(01)00143-7.

    Article  Google Scholar 

  29. EU-Strategie für Weniger Plastikmüll in Europa – Einfach Erklärt (2018); https://www.europarl. europa.eu/news/de/headlines/ priorities/klimawandel/20180830STO11347/eu-strategie-fur-weniger-plastikmull-in-europa.

  30. A. Crespo, The URBANRec Project: New Approaches for Recovery of Urban Bulky Waste to Create High Added-Value Recycled Products, pp. 98–103; https://urbanrec-project.eu/ficheros/Final_results.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sylovaniuk.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 57, No. 6, pp. 5–14, November–December, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suprun, V.Y., Marukha, V.І. & Sylovaniuk, V.P. Recycling Technologies for Polyurethane Wastes (A Survey). Mater Sci 57, 755–764 (2022). https://doi.org/10.1007/s11003-022-00605-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-022-00605-x

Keywords

Navigation