Skip to main content
Log in

A Quantum-Chemical Model of Active Centers of Electrochemical Corrosion of Metals

  • Published:
Materials Science Aims and scope

Abstract

On the atomic level, we consider a model of the formation of active centers on the surface of a metal, which control the course of corrosion and electrochemical processes. Our quantum-chemical computations demonstrate that a foreign tin atom in a Sn - Ni8 - Ni cluster can favor the dissolution of nickel in an acid medium, and a zinc atom in a Zn - Ni8 - Ni cluster induces its passivation. We also show that the introduction of an oxygen atom into a cluster favors the passivation of nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. V. Akimov, Theory and Methods of Studying the Corrosion of Metals [in Russian], Akad. Nauk SSSR, Moscow (1945).

    Google Scholar 

  2. Ya. M. Kolotyrkin and G. M. Florianovich, “Interrelation of the corrosion and electrochemical properties of iron, chromium, nickel, and their binary and ternary alloys,” in: VINITI Series in Corrosion and Corrosion Protection [in Russian], Vol. 4, VINITI, Moscow (1975), pp. 5–45.

    Google Scholar 

  3. A. N. Frumkin, Potentials of Zero Charge [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  4. B. N. Kabanov, Electrochemistry of Metals and Adsorption [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  5. M. A. Shluger, F. F. Azhogin, and V. A. Efimov, Corrosion and Protection of Metals [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  6. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 92/DFT/-Revision G. 2., Gaussian Inc., Pittsburgh, PA (1993).

    Google Scholar 

  7. P. J. Hay and W. R. Wadt, “Ab initio effective core potential for molecular calculations,” J. Chem. Phys., 82, 270–310 (1985).

    Article  Google Scholar 

  8. J. S. Binkley, J. A. Pople, and W. J. Hehre, “Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements,” J. Am. Chem. Soc., 102, 939–947 (1980).

    Article  Google Scholar 

  9. V. I. Avdeev, I. I. Zakharov, G. M. Zhidomirov, et al., “Electronic structure of OH adsorbed on nickel,” Zh. Strukt. Khim., 33, No.2, 29–34 (1992).

    Google Scholar 

  10. V. I. Avdeev, I. I. Zakharov, G. M. Zhidomirov, et al., “Ab initio calculations for adsorbed state of OH group on Ni(110),” React. Kinet. Catal. Lett., 45, No.1, 61–66 (1991).

    Article  Google Scholar 

  11. V. I. Avdeev, I. I. Zakharov, and G. M. Zhidomirov, “Theoretical analysis of the dissociative adsorption of H2O on Ni(100),” Zh. Strukt. Khim., 33, No.2, 35–41 (1992).

    Google Scholar 

  12. I. I. Zakharov, V. I. Avdeev, and G. M. Zhidomirov, “Non-empirical cluster model calculations of the adsorption of H2O on Ni(111),” Surf. Sci., 277, 407–413 (1992).

    Article  Google Scholar 

  13. V. I. Pokhmurs’kyi, M. S. Khoma, V. I. Kopylets’, and S. A. Kornii, “An investigation of the initial stage of selective dissolution of zinc-aluminum alloys in a chloride-containing medium,” Fiz.-Khim. Mekh. Mater., 39, No.3, 76–80 (2003).

    Google Scholar 

  14. A. V. Vvedenskii and I. K. Marshakov, “Initial stage of the anodic dissolution of copper-gold alloys in chloride and sulfate solutions,” Elektrokhimiya, 33, No.3, 298–307 (1997).

    Google Scholar 

  15. D. Landolt, “Mass transfer processes in the course of anodic dissolution of metals,” Elektrokhimiya, 31, No.3, 228–234 (1995).

    Google Scholar 

  16. A. S. Sultanov, Mendeleev’s Chemical Theory of Catalysis and Its Subsequent Development [in Russian], Akad. Nauk Uzb. SSR, Tashkent (1961).

    Google Scholar 

  17. E. K. Oshe, “Anodic defect formation, nonstoichiometry, and phase transitions in oxide films on nickel in an acid solution,” Elektrokhimiya, 31, No.3, 307–312 (1995).

    Google Scholar 

  18. I. I. Zakharov, I. N. Shapovalova, O. I. Zakharova, et al., “Nonempirical calculation of the structure density of surface compounds of ozone and oxygen on Ni(110) by the functional method,” Zh. Strukt. Khim., 42, No.6, 1064–1070 (2001).

    Google Scholar 

  19. N. F. Tyupalo and O. I. Kolbasina, “On the mechanism of ozone reactions with compounds of metals of variable valence,” Visn. Skhidn. Derzh. Univer., No. 4(20), 31–35 (1999).

    Google Scholar 

  20. G. O. Tatarchenko, “On the mechanism of passivation of metals in acid ozonized media,” Fiz.-Khim. Mekh. Mater., 37, Special Issue No. 2, 73–77 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 41, No. 1, pp. 12–18, January–February, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapovalova, I.N., Tatarchenko, G.O., Zakharov, I.I. et al. A Quantum-Chemical Model of Active Centers of Electrochemical Corrosion of Metals. Mater Sci 41, 7–14 (2005). https://doi.org/10.1007/s11003-005-0126-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-005-0126-6

Keywords

Navigation