Skip to main content
Log in

A geomorphological seabed classification for the Weddell Sea, Antarctica

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

An Erratum to this article was published on 25 April 2016

Abstract

Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated and supplied to the data archive PANGAEA. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45–70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5–7 km width, build an approx. 40–70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson JB (1971) Marine origin of sands in the Weddell Sea. Antarct J US 6:168–169

    Google Scholar 

  • Anderson JB, Wright R, Andrews B (1986) Weddell Fan and associated abyssal plain, Antarctica: morphology, sediment processes, and factors influencing sediment supply. Geo-Mar Lett 6:121–129

    Article  Google Scholar 

  • Arndt JE, Schenke HW, Jakobsson M, Nitsche F, Buys G, Goleby B, Rebesco M, Bohoyo F, Hong JK, Black J, Greku R, Udintsev G, Barrios F, Reynoso-Peralta W, Morishita T, Wigley R (2013) The International Bathymetric Chart of the Southern Ocean (IBCSO) version 10: a new bathymetric compilation covering circum-Antarctic waters. Geophys Res Lett 40(9):1–7. doi:10.1002/grl.50413

    Google Scholar 

  • Bart PJ, De Batist M, Jokat W (1999) Interglacial collapse of Crary trough mouth fan, Weddell Sea, Antarctica: implications for glacial history analysis. J Sediment Res 69(6):1276–1289

    Article  Google Scholar 

  • Beck MW (2000) Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods. J Exp Mar Biol Ecol 249(1):29–49

    Article  Google Scholar 

  • Bekkby T, Erikstad L, Bakkestuen V, Bjørge A (2002) A landscape ecological approach to coastal zone applications. Sarsia 87:396–408

    Article  Google Scholar 

  • Bekkby T, Erikstad L, Christensen O, Longva O (2005) Effekten av skala og kriterier for inndeling i marine substrattyper. Vann 1:35–43

    Google Scholar 

  • Boström C, Pittman SJ, Simenstad C, Kneib RT (2011) Seascape ecology of coastal benthic habitats: advances, gaps, and challenges. Mar Ecol Prog Ser 427:191–217

    Article  Google Scholar 

  • Brandt A, Linse K, Schüller M (2009) Bathymetric distribution patterns of Southern Ocean macrofaunal taxa: Bivalvia, Gastropoda, Isopoda and Polychaeta. Deep Sea Res Part I: Oceanogr Res Pap 56:2013–2025

    Article  Google Scholar 

  • Brey T, Dahm C, Gorny M, Klages M, Stiller M et al (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6

    Article  Google Scholar 

  • Dartnell P, Gardner JV (2004) Predicted seafloor facies from multibeam bathymetry and acoustic backscatter data, Central Santa Monica Bay, California. Photogram Eng Rem Sens 70(9):1081–1091

    Article  Google Scholar 

  • Diekmann B, Kuhn G (1997) Terrigene Partikeltransporte als Abbild spätquartärer Tiefen- und Bodenwasserzirkulation im Südatlantik und angrenzendem Südpolarmeer. J Ger Geol Soc 148:405–429

    Google Scholar 

  • Diekmann B, Kuhn G (1999) Provenance and dispersal of glacial–marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport. Mar Geol 158:209–231

    Article  Google Scholar 

  • Dolan MFJ, Buhl-Mortensen P, Thorsnes T, Buhl-Mortensen L, Bellec VK, Bøe R (2009) Developing seabed nature-type maps offshore Norway: initial results from the MAREANO programme. Nor J Geol 89:17–28

    Google Scholar 

  • Dolan MFJ, Thorsnes T, Leth J, Al-Hamdani Z, Guinan J, Van Lancker V (2012) Terrain characterization from bathymetry data a various resloutions in European waters—experiences and recommendations. NGU Report 2012045 Geological Survey of Norway

  • Douglass LL, Turner J, Grantham HS, Kaiser S, Constable A et al (2014) A hierarchical classification of benthic biodiversity and assessment of protected areas in the Southern Ocean. PLoS ONE. doi:10.1371/journalpone0100551

    Google Scholar 

  • Duhamel G, Hautecoeur M (2009) Biomass, abundance and distribution of fish in the Kerguelen Islands. EEZ (CCAMLR statistical division 5851) CCAMLR. Science 16:1–32

    Google Scholar 

  • Dzeroski S, Drumm DJ (2003) Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga. Cook Islands. Ecol Model 170(2–3):219–226

    Article  Google Scholar 

  • Erdey-Heydorn MD (2008) An ArcGIS seabed characterization toolbox developed for investigating benthic habitats. Mar Geod 31:318–358. doi:10.1080/014904108024668I9

    Article  Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Evans M, Hastings N, Peacock B (2000) Statistical distributions, 3rd edn. Wiley, New York

    Google Scholar 

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62(4):344–359

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Fütterer DK, Grobe H, Grünig S (1988) Quaternary sediment patterns in the Weddell Sea: relations and environmental conditions. Paleoceanography 3:551–561

    Article  Google Scholar 

  • Fütterer DK, Kuhn G, Schenke HW (1990) Wegener Canyon bathymetry and results from rock dredging near ODP Sites 691–693, eastern Weddell Sea, Antarctica. In: Barker PF et al (ed) College Station, TX: Ocean Drilling Program, pp 39–48

  • Gales JA, Leat PT, Larter RD, Kuhn G, Hillenbrand CD, Graham AGC, Mitchell NC, Tate AJ, Buys GB, Jokat W (2014) Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Mar Geol 348:73–87

    Article  Google Scholar 

  • Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarct Sci 19:165–182

    Article  Google Scholar 

  • Haid V (2013) Coastal polynyas in the southwestern Weddell Sea: surface fluxes, sea ice production and water mass modification. Dissertation, Universität Bremen. http://www.elibsuubuni-bremende/edocs/00103445-1pdf

  • Harris PT, Macmillan-Lawler M, Rupp J, Baker EK (2014) Geomorphology of the oceans. Mar Geol 352:4–24

    Article  Google Scholar 

  • Heap AD, Harris PT (2008) Geomorphology of the Australian margin and adjacent seabed. Aust J Earth Sci 55:555–585

    Article  Google Scholar 

  • Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda, Valvifera, Chaetiliidae). Sci mar 69:175–181

    Article  Google Scholar 

  • Hellmer HH, Huhn O, Gomis D, Timmermann R (2011) On the freshening of the northwestern Weddell Sea continental shelf. Ocean Sci 7:305–316. doi:10.5194/os-7-305-2011

    Article  Google Scholar 

  • Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225–228. doi:10.1038/nature11064

    Article  Google Scholar 

  • Hillenbrand C-D, Bentley MJ, Stolldorf TD, Hein AS, Kuhn G, Graham AGC, Fogwill CJ, Kristoffersen Y, Smith JA, Anderson JB, Larter RD, Melles M, Hodgson DA, Mulvaney R, Sugden DE (2014) Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quat Sci Rev 100:111–136

    Article  Google Scholar 

  • Hobson RD (1972) Surface roughness in topography: quantitative approach. In: Chorley RJ (ed) Spatial analysis in geomorphology. Harper and Row, New York, pp 221–245

    Google Scholar 

  • Huhn O, Hellmer HH, Rhein M, Rodehacke C, Roether W, Schodlok MP, Schröder M (2008) Evidence of deep- and bottom-water formation in the western Weddell Sea. Deep Sea Res Part II: Top Stud Oceanogr 55(8–9):1098–1116. doi:10.1016/jdsr2200712015

    Article  Google Scholar 

  • Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99(2):137–148

    Article  Google Scholar 

  • Huybrechts P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat Sci Rev 21(1–3):203–231. doi:10.1016/S0277-3791(01)00082-8

    Article  Google Scholar 

  • Jenness JS (2004) Calculating landscape surface area from digital elevation models. Wildl Soc B 32(3):829–839

    Article  Google Scholar 

  • Jenness J (2013) DEM surface tools for ArcGIS, version 21375. Jenness Enterprises. http://www.jennessentcom/arcgis/surface_areahtm

  • Knox GA (2007) Biology of the Southern Ocean. CRC Press, Boca Raton

    Google Scholar 

  • Kostylev VE, Todd BJ, Fader GBJ, Cameron GDM, Pickrill RA (2001) Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar Ecol-Prog Ser 219:121–137

    Article  Google Scholar 

  • Kostylev VE, Courtney RC, Robert G, Todd BJ (2003) Stock evaluation of giant scallop (Placopecten magellanicus) using high-resolution acoustics for seabed mapping. Fish Res 60(2–3):479–492

    Article  Google Scholar 

  • Kostylev VE, Erlandsson J, Mak YM, Williams GA (2005) The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecol Complex 2(3):272–286. doi:10.1016/jecocom200504002

    Article  Google Scholar 

  • Kuhn G, Weber M (1993) Acoustical characterization of sediments by Parasound and 35 kHz systems: related sedimentary processes on the southeastern Weddell Sea continental slope, Antarctica. Mar Geol 113:201–217

    Article  Google Scholar 

  • Kuvaas B, Kristoffersen Y (1991) The Crary Fan: a trough-mouth fan on the Weddell Sea continental margin, Antarctica. Mar Geol 97:345–362

    Article  Google Scholar 

  • Larter RD, Graham AGC, Hillenbrand C-D, Smith JA, Gales JA (2012) Late quaternary grounded ice extent in the Filchner Trough, Weddell Sea, Antarctica: new marine geophysical evidence. Quat Sci Rev 53:111–122

    Article  Google Scholar 

  • Lindeque A, Martos Martin YM, Gohl K, Maldonado A (2013) Deep-sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Mar Geol 336:61–83

    Article  Google Scholar 

  • Lundblad E, Wright DJ, Miller J, Larkin EM, Rinehart R, Naar DF, Donahue BT, Anderson SM, Battista T (2006) A benthic terrain classification scheme for American Samoa. Mar Geod 29(2):89–111

    Article  Google Scholar 

  • Melles M, Kuhn G (1993) Sub-bottom profiling and sedimentological studies in the southern Weddell Sea, Antarctica: evidence for large-scale erosional/depositional processes. Deep-Sea Res I: Oceanogr Res Pap 40(4):739–760

    Article  Google Scholar 

  • Melles M, Kuhn G, Fütterer D, Meischner D (1995) Processes of modern sedimentation in the Southern Weddell Sea, Antractica: evidence from surface sediments. Polarforschung 64:45–74

    Google Scholar 

  • Michels KH, Rogenhagen J, Kuhn G (2001) Recognition of contour-current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Mar Geophys Res 22:465–485

    Article  Google Scholar 

  • Michels KH, Kuhn G, Hillenbrand C-D, Diekmann B, Fütterer DK, Grobe H, Uenzelmann-Neben G (2002) The southern Weddell Sea: combined contourite-turbidite sedimentation at the southeastern margin of the Weddell Gyre. In: Stow DAV, Pudsey C, Howe JC, Faugères J-C, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series. Seism Sedim Charact Geol Soc, London, pp 305–323

    Google Scholar 

  • Moons A, De Batist M, Henriet JP, Miller H (1992) Sequence stratigraphy of the Crary Fan, southeastern Weddell Sea. In: Yoshida Y et al (eds) Recent progress in Antarctic Earth Science, pp 613–618

  • O’Brien PE, Post AL, Romeyn R (2009) Antarctic-wide Geomorphology as an aid to habitat mapping and locating vulnerable marine ecosystems, CCAMLR Document number WS-VME-09/10 Canberra, Australia

  • Parnum IM, Siwabessy PJW, Gavrilov AN (2004) Identification of seafloor habitats in coastal shelf waters using a multibeam echosounder. In: Proceedings of acoustics Nov 3–5

  • Pittman SJ, Kneib RT, Simenstad CA (2011) Practicing coastal seascape ecology. Mar Ecol Prog Ser 427:187–190

    Article  Google Scholar 

  • Post AL (2012, updated 2013) Antarctic wide seafloor geomorphology. Australian Antarctic Data Centre-CAASM-Metadata http://www.dataaadgovau/aadc/metadata/metadata_redirectcfm?md=/AMD/AU/ant_seafloor_geomorph)

  • Post AL, O’Brien PE, Beaman RJ, Riddle MJ, de Santis L (2010) Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarct Sci 22(4):371–378. doi:10.1017/S0954102010000180

    Article  Google Scholar 

  • Post AL, Beaman RJ, O’Brien PE, Eléaume M, Riddle MJ (2011) Community structure and benthic habitats across the George V Shelf, East Antarctica: trends through space and time. Deep Sea Res Part II: Top Stud Oceanogr 58:105–118

    Article  Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5(1–4):23–27

    Google Scholar 

  • Sappington JM, Longshore KM, Thomson DB (2007) Quantifiying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wildlife Manage 71(5):1419–1426

    Article  Google Scholar 

  • Stolldorf T, Schenke H-W, Anderson JB (2012) LGM ice sheet extent in the Weddell Sea: evidence for diachronous behavior of Antarctic Ice Sheets. Quat Sci Rev 48:20–31

    Article  Google Scholar 

  • Thatje S, Hillenbrand C, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Article  Google Scholar 

  • Weber ME, Clark PU, Ricken W, Mitrovica JX, Hostetler SW, Kuhn G (2011) Interhemispheric ice-sheet synchronicity during the last glacial maximum. Science 334:1265–1269

    Article  Google Scholar 

  • Wedding LM, Lepczyk CA, Pittman SJ, Friedlander AM, Jorgensen S (2011) Quantifying seascape structure: extending terrestrial spatial pattern metrics to the marine realm. Mar Ecol Prog Ser 427:219–232

    Article  Google Scholar 

  • Weiss AD (2001) Topographic positions and landforms analysis (poster). ESRI international user conference, July 2001 San Diego, CA: ESRI

  • Whitehouse PL, Bentley MJ, Le Brocq AM (2012a) A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat Sci Rev 32:1–24

    Article  Google Scholar 

  • Whitehouse PL, Bentley MJ, Milne GA, King MA, Thomas ID (2012b) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys J Int 190:1464–1482

    Article  Google Scholar 

  • Wienberg C, Wintersteller P, Beuck L, Hebbeln D (2013) Coral Patch seamount (NE Atlantic): a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys. Biogeosciences 10:3421–3443. doi:10.5194/bg-10-3421-2013

    Article  Google Scholar 

  • Wilbur AR (2000) Fish habitat characterization and assessment: approach to integrate seafloor features and juvenile organisms data. Oceans 2000: where marine science and technology meet 3:1555–1561. doi:10.1109/OCEANS.2000.882162

  • Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geod 30:13–35. doi:10.1080/01490410701295962

    Article  Google Scholar 

  • Wood JD (1996) The geomorphological characterisation of digital elevation models. Dissertation University of Leicester

  • Wright R, Anderson JB (1982) The importance of sediment gravity flow to sediment transport and sorting in a glacial marine environment: Eastern Weddell Sea, Antarctica. Geol Soc Am Bull 93:951–963

    Article  Google Scholar 

  • Wright DJ, Lundblad ER, Larkin EM, Rinehart RW, Murphy J, Cary-Kothera L, Draganov K (2005) ArcGIS Benthic Terrain Modeler: a collection of tools used with bathymetric data sets to examine the deepwater benthic environment. Oregon State University, Corvallis

    Google Scholar 

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography Earth surface. Process Landf 12:47–56

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank D. Beaver for enlightening discussions and Torben Gentz for technical help and support. Two anonymous reviewers deserve a big Thank you for careful reading and providing good advice and helpful comments. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the Priority Programme “Antarctic Research with comparative investigations in Arctic ice areas” by a Grant JE 680/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Jerosch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerosch, K., Kuhn, G., Krajnik, I. et al. A geomorphological seabed classification for the Weddell Sea, Antarctica. Mar Geophys Res 37, 127–141 (2016). https://doi.org/10.1007/s11001-015-9256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-015-9256-x

Keywords

Navigation