Skip to main content
Log in

Evaluating Cenozoic equatorial sediment deposition anomalies for potential paleoceanographic and Pacific plate motion applications

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

If equatorial sediments form characteristic deposits around the equator, they may help to resolve the amount of northwards drift of the Pacific tectonic plate. Relevant to this issue, it has been shown that 230Th has been accumulating on the equatorial seabed faster than its production from radioactive decay in the overlying water column during the Holocene (Marcantonio et al. in Paleoceanography 16:260–267, 2001). Some researchers have argued that this reflects the deposition of particles with adsorbed 230Th carried by bottom currents towards the equator (“focusing”). If correct, this effect may combine with high pelagic productivity, which is also centered on the equator, to yield a characteristic signature of high accumulation rates marking the paleoequator in older deposits. Here we evaluate potential evidence that such an equatorial feature existed in the geological past. Seismic reflection data from seven meridional transects suggest that a band of equatorially enhanced accumulation of restricted latitude was variably developed, both spatially and temporally. It is absent in the interval 14.25–20.1 Ma but is well developed for the interval 8.55–14.25 Ma. We also examined eolian dust accumulation rate histories generated from scientific drilling data. A dust accumulation rate anomaly near the modern equator, which is not obviously related to the inter-tropical convergence zone, is interpreted as caused by focusing. Accumulation rates of Ba and P2O5 (proxies of export production) reveal a static equatorial signature, which suggests that the movement of the Pacific plate over the period 10–25 Ma was modest. The general transition from missing to well-developed focusing signatures around 14.25 Ma in the seismic data coincides with the mid-Miocene development of the western boundary current off New Zealand. This current supplies the Pacific with deep water from Antarctica, and could therefore imply a potential paleoceanographic or paleoclimatic origin. At 10.05–14.25 Ma, the latitudes of the seismic anomalies are up to ~2° different from the paleoequator predicted by Pacific plate-hotspot models, suggesting potentially a small change in the hotspot latitudes relative to the present day (although this inference depends on the precise form of the deposition around the equator). The Ba and P2O5 anomalies, on the other hand, are broadly compatible with plate models predicting slow northward plate movement over 10–25 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson RF, Fleisher MQ, Lao Y (2006) Glacial-interglacial variability in the delivery of dust to the central equatorial Pacific Ocean. Earth Planet Sci Lett 242:406–414

    Article  Google Scholar 

  • Apel JR (1987) Principles of ocean physics. Academic Press, New York, p 634

    Google Scholar 

  • Beaman M, Sager WW, Acton GD, Lanci L, Pares J (2007) Improved Late Cretaceous and early Cenozoic paleomagnetic apparent polar wander path for the Pacific plate. Earth Planet Sci Lett 262:1–20

    Article  Google Scholar 

  • Berger WH (1973) Cenozoic sedimentation in the eastern tropical Pacific. Bull Geol Soc Am 84:1941–1954

    Article  Google Scholar 

  • Bloomer SF, Mayer LA (1997) Core-log-seismic integration as a framework for determining the basin-wide significance of regional reflectors in the eastern equatorial Pacific. Geophys Res Lett 24:321–324

    Article  Google Scholar 

  • Bloomer SF, Mayer LA, Moore TC (1995) Seismic stratigraphy of the eastern equatorial Pacific Ocean: paleoceanographic implications. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results, vol 138. Ocean Drilling Program, College Station, TX, pp 537–553

    Google Scholar 

  • Broecker W (2008) Excess sediment 230Th: transport along the sea floor or enhanced water column scavenging? Global Biogeochem Cycles 22:Paper GB1006. doi:10.1029/2007GB003057

  • Doubrovine PV, Tarduno JA (2004) Late Cretaceous paleolatitude of the Hawaiian Hot Spot: New paleomagnetic data from Detroit Seamount (ODP Site 883). Geochem Geophys Geosyst 5. doi:10.1029/2004GC000745

  • Dubois N, Mitchell NC (2012) Large-scale sediment redistribution on the equatorial Pacific seafloor. Deep Sea Res I 69:51–61

    Article  Google Scholar 

  • Dymond J, Lyle M (1994) Particle fluxes in the ocean and implications for sources and preservation of ocean sediments. In: Hay WW, Andrews JT, Baker VR, Dymond J, Kump LR, Lerman A, Martin WR, Meybeck M, Milliman JD, Rea DK, Sayles FL (eds) National Research Council: material fluxes on the surface of the Earth. National Academy Press, Washington, DC, pp 125–143

    Google Scholar 

  • Expedition 320/321 Scientists (2010) Methods. In: Pälike H, Lyle M, Nishi H, Raffi I, Gamage K, Klaus A, Scientists tE (eds) Proceedings of the IODP, 320/321. Integrated Ocean Drilling Program Management International, Inc., Tokyo

  • Farrell JW, Raffi I, Janecek TR, Murray DW, Levitan M, Dadey K, Emeis K-C, Lyle M, Flores J-A, Hovan S (1995) Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results, vol 138. Ocean Drilling Program, College Station, TX, pp 717–756

    Google Scholar 

  • Faul KL, Paytan A (2005) Phosphorus and barine concentrations and geochemistry in Site 1221 Paleocene/Eocene boundary sediments. In: Wilson PA, Lyle M, Firth JV (eds) Proceedings of the ocean drilling program, scientific results, vol 199. Ocean Drilling Program, College Station, TX

  • Filippelli GM, Delaney ML (1996) Phosphorus geochemistry of equatorial Pacific sediments. Geochim Cosmochim Acta 60:1479–1495

    Google Scholar 

  • Francois R, Frank M, Rutgers van der Loeff MM, Bacon MP (2004) 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19. doi:10.1029/2003PA000939

  • Francois R, Frank M, Rutgers van der Loeff M, Bacon MP, Geibert W, Kienast S, Anderson RF, Bradtmiller L, Chase Z, Henderson G, Marcantonio F, Allen SE (2007) Comment on ‘‘Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?’’ by M. Lyle et al. Paleoceanography 22:Paper PA1216. doi:10.1029/2005PA001235

  • Hall IR, McCave IN, Zahn R, Carter L, Knutz PC, Weedon GP (2003) Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: reflections of East Antarctic Ice Sheet growth. Paleoceanography 18:Paper 1040. doi:10.1029/2002PA000817

  • Herron EM (1972) Sea-floor spreading and the Cenozoic history of the east-central Pacific. Geol Soc Am Bull 83:1671–1692

    Article  Google Scholar 

  • Honjo S, Dymond J, Collier R, Manganini SJ (1995) Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res 42:831–870

    Article  Google Scholar 

  • Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217–285

    Article  Google Scholar 

  • Hovan SA (1995) Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the Eastern Equatorial Pacific Ocean. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, College Station, TX, pp 615–625

    Google Scholar 

  • Huybers P, Wunsch C (2010) Paleophysical oceanography with an emphasis on transport rates. Ann Rev Mar Sci 2:1–34

    Article  Google Scholar 

  • Johnson DA (1972) Ocean-floor erosion in the equatorial Pacific. Geol Soc Am Bull 83:3121–3144

    Article  Google Scholar 

  • Kienast SS, Kienast M, Mix AC, Calvert SE, Francois R (2007) Thorium-230 normalized particle flux and sediment focusing in the Panama Basin region during the last 30,000 years. Paleoceanography 22:Paper PA2213. doi:10.1029/2006PA001357

  • Knappenberger MB (2000) Sedimentation rates and Pacific plate motion calculated using seismic cross sections of the Neogene equatorial sediment bulge. MSc thesis, Boise State University, Boise, p 95

  • Koppers AAP, Phipps Morgan J, Morgan JW, Staudigel H (2001) Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet Sci Lett 185:237–252

    Article  Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    Article  Google Scholar 

  • Laguros GA, Shipley TH (1989) Quantitative estimates of resedimentation in the pelagic sequence of the equatorial Pacific. Mar Geol 89:269–277

    Article  Google Scholar 

  • Lyle M (2003) Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18. doi:10.1029/2002PA000777

  • Lyle M, Mitchell NC, Pisias N, Mix A, Ignacio Martinez J, Paytan A (2005) Do geochemical estimates of sediment focusing in the equatorial Pacific pass the sediment test? Paleoceanography 20:PA1005. doi:10.1029/2004PA001019

    Article  Google Scholar 

  • Lyle M, Pisias N, Paytan A, Ignacio Martinez J, Mix A (2007) Reply to comment by R. Francois et al. on ‘‘Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?’’: further explorations of 230Th normalization. Paleoceanography 22:Paper PA1217. doi:10.1029/2006PA001373

  • Lyle M, Pälike H, Nishi H, Raff I, Gamage K, Klaus A, Shipboard Party (2010) The Pacific Equatorial Age Transect, IODP Expeditions 320 and 321: building a 50-million-year-long environmental record of the equatorial Pacific Ocean. Sci Drill 9:4–15. doi:10.2240/iodp.sd.2249.2201.2010

    Google Scholar 

  • Mangini A, Domink J, Müller PJ, Stoffers P (1982) Pacific deep circulation: a velocity increase at the end of the interglacial stage 5? Deep-Sea Res 29(12A):1517–1530

    Article  Google Scholar 

  • Mann P, Taira A (2004) Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics 389:137–190

    Article  Google Scholar 

  • Marcantonio F, Anderson RF, Higgins S, Stute M, Schlosser P, Kubik P (2001) Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography 16:260–267

    Article  Google Scholar 

  • Mayer LA (1979) Deep-sea carbonates: acoustic, physical, and stratigraphic properties. J Sediment Petrol 49:819–836

    Google Scholar 

  • Mayer LA, Shipley TH, Theyer F, Wilkens RH, Winterer EL (1985) Seismic modeling and paleoceanography at deep sea drilling project site 574. In: Mayer L, Theyer F et al (eds) Initial reports DSDP. U. S. Govt. Printing Office, Washington, DC, pp 947–970

    Google Scholar 

  • Mayer LA, Shipley TH, Winterer EL (1986) Equatorial Pacific seismic reflectors as indicators of global oceanographic events. Science 233:761–764

    Article  Google Scholar 

  • Mayer LA, Pisias NG, Janecek TR et al (1992) Proceedings of the ODP, initial reports 138. Ocean Drilling Program, Texas A&M University, College Station, TX

  • McGee D, Marcantonio F, Lynch-Stieglitz J (2007) Deglacial changes in dust flux in the eastern equatorial Pacific. Earth Planet Sci Lett 257:215–230

    Article  Google Scholar 

  • Mitchell NC (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar. J Geophys Res 98:22477–22493

    Article  Google Scholar 

  • Mitchell NC (1995) Diffusion transport model for pelagic sediments on the Mid-Atlantic Ridge. J Geophys Res 100(10):19991–20009

    Article  Google Scholar 

  • Mitchell NC (1998a) Modeling Cenozoic sedimentation in the central equatorial Pacific and implications for true polar wander. J Geophys Res 103:17749–17766

    Article  Google Scholar 

  • Mitchell NC (1998b) Sediment accumulation rates from Deep Tow profiler records and DSDP Leg 70 cores over the Galapagos Spreading Centre. In: Cramp A, MacLeod CJ, Lee SV, Jones EJW (eds) Geological evolution of ocean basins: results from the ocean drilling program, Geological Society Special Publications. Geological Society, London, pp 199–209

    Google Scholar 

  • Mitchell NC, Huthnance JM (2013) Geomorphological and geochemical evidence (230Th anomalies) for cross-equatorial currents in the central Pacific. Deep Sea Res I 78:24–41. doi:10.1016/j.dsr.2013.04.003

    Article  Google Scholar 

  • Mitchell NC, Lyle MW (2005) Patchy deposits of Cenozoic pelagic sediments in the central Pacific. Geology 33:49–52

    Article  Google Scholar 

  • Mitchell NC, Lyle MW, Knappenberger MB, Liberty LM (2003) The lower Miocene to present stratigraphy of the equatorial Pacific sediment bulge and carbonate dissolution anomalies. Paleoceanography 18. doi:10.1029/2002PA000828

  • Moore TC, van Andel TH, Sancetta C, Pisias N (1978) Cenozoic hiatuses in pelagic sediments. Micropaleontology 24:113–138

    Article  Google Scholar 

  • Moore TC, Backman J, Raffi I, Nigrini C, Sanfilippo A, Palike H, Lyle M (2004) Paleogene tropical Pacific: clues to circulation, productivity, and plate motion. Paleoceanography 19:Paper PA3013. doi:10.1029/2003PA000998

  • Moore TC, Mayer LA, Lyle M (2012) Sediment mixing in the tropical Pacific and radiolarian stratigraphy. Geochem Geophys Geosyst 13. doi:10.1029/2012GC004198

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:paper Q04006. doi:10.1029/2007GC001743

  • Murray RW, Knowlton C, Leiden M, Mix AC, Polsky CH (2000a) Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr. Paleoceanography 15:570–592

    Article  Google Scholar 

  • Murray RW, Knowlton C, Leiden M, Mix AC, Polsky CH (2000b) Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotop Stage 11. Global Planet Change 24:59–78

    Article  Google Scholar 

  • Olivarez Lyle A, Lyle M (2005) Organic carbon and barium in Eocene sediments: possible controls on nutrient recycling in the Eocene equatorial Pacific ocean. In: Wilson PA, Lyle M, Firth JV (eds) Proceedings of the ocean drilling program, scientific results, vol 199. Ocean Drilling Program, College Station, TX

  • Pälike H, Lyle MW, Ahagon N, Raffi I, Gamage K, Zarikian CA (2008) Pacific equatorial age transect (online). In: Integrated ocean drilling program science prospectus, p 96. doi:10.2204/iodp.sp.320321.322008

  • Pälike H, Lyle M, Nishi H, Raffi I, Gamage K, Klaus A, Expedition Scientists (2010) Proceedings of the integrated ocean drilling program, Integrated Ocean Drilling Program, College Station, TX. doi:10.2204/iodp.proc.320321.320101.322010

  • Pälike H, Lyle MW, Nishi H, Raffi I, Ridgwell A, Gamage K, Klaus A, Acton G, Anderson L, Backman J, Baldauf J, Beltran C, Bohaty SM, Bown P, Busch W, Channell JET, Chun COJ, Delaney M, Dewangan P, Jones TD, Edgar KM, Evans H, Fitch P, Foster GL, Gussone N, Hasegawa H, Hathorne EC, Hayashi H, Herrle JO, Holbourn A, Hovan S, Hyeong K, Iijima K, Ito T, Kamikuri S, Kimoto K, Kuroda J, Leon-Rodriguez L, Malinverno A, Moore TC, Murphy BH, Murphy DP, Nakamura H, Ogane K, Ohneiser C, Richter C, Robinson R, Rohling EJ, Romero O, Sawada K, Scher H, Schneider L, Sluijs A, Takata H, Tian J, Tsujimoto A, Wade BS, Westerhold T, Wilkens R, Williams T, Wilson PA, Yamamoto Y, Yamamoto S, Yamazaki T, Zeebe RE (2012) A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488:609–615

    Article  Google Scholar 

  • Parés JM, Moore TC (2005) New evidence for the Hawaiian hotspot plume motion since the Eocene. Earth Planet Sci Lett 237:951–959

    Article  Google Scholar 

  • Paytan A, Kastner M, Chavez FP (1996) Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science 274:1355–1357

    Article  Google Scholar 

  • Pisias NG, Mayer LA, Mix AC (1995) Paleoceanography of the eastern equatorial Pacific during the Neogene: synthesis of Leg 138 drilling results. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, College Station, TX, pp 5–21

    Google Scholar 

  • Quintin LL, Faul KL, Lear C, Graham D, Peng C, Murray RW, Shipboard Scientific Party (2002) Geochemical analysis of bulk marine sediment by inductively coupled plasma—atomic emission spectroscopy on board the JOIDES Resolution. In: Lyle M, Wilson PA, Janececk TR (eds) Proceedings of the ocean drilling program, initial reports 199. Ocean Drilling Program, College Station, TX

  • Sager WW (2007) Divergence between paleomagnetic and hotspot-model-predicted polar wander for the Pacific plate with implications for hotspot fixity. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes, Geological Society of America Special Paper 430. Geological Society of America, pp 335–357

  • Sager WW, Pringle MS (1988) Mid-Cretaceous to early Tertiary apparent polar wander path of the Pacific plate. J Geophys Res 93:11753–11771

    Article  Google Scholar 

  • Schuth S, Münker C, König S, Qopoto C, Basi S, Garbe-Schönberg D, Ballhaus C (2009) Petrogenesis of lavas along the Solomon Island Arc, SW Pacific: coupling of compositional variations and subduction zone geometry. J Petrol 50:781–811

    Article  Google Scholar 

  • Shackleton NJ, Crowhurst S, Hagelberg T, Pisias NG, Schneider DA (1995) A new late Neogene time scale: application to leg 138 sites. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results, vol 138. Ocean Drilling Program, College Station, TX, pp 73–101

    Google Scholar 

  • Shipley TH, Winterer EL, Goud M, Mills SJ, Metzler CV, Paull CK, Shay JT (1985) Seabeam bathymetric and water-gun seismic reflection surveys in the equatorial Pacific. In: Mayer L, Theyer F (eds) Initial reports. DSDP, 85. U.S. Govt. Printing Office, Washington, pp 825–837

  • Siddall M, Anderson RF, Winckler G, Henderson GM, Bradtmiller LI, McGee D, Franzese A, Stoker TF, Müller SA (2008) Modeling the particle flux effect on distribution of 230Th in the equatorial Pacific. Paleoceangraphy 23:Paper PA2208. doi:10.1029/2007PA001556

  • Singh AK, Marcantonio F, Lyle M (2011) Sediment focusing in the Panama Basin. Earth Planet Sci Lett 309:33–44

    Article  Google Scholar 

  • Singh AK, Marcantonio F, Lyle M (2013) Water column 230Th systematics in the eastern equatorial Pacific Ocean and implications for sediment focusing. Earth Planet Sci Lett 362:294–304

    Google Scholar 

  • Steinberger B (2000) Plumes in a convecting mantle: models and observations for individual hotspots. J Geophys Res 105:11127–11152

    Article  Google Scholar 

  • Suarez G, Molnar P (1980) Paleomagnetic data and pelagic sediment facies and the motion of the Pacific plate relative to the spin axis since the Late Cretaceous. J Geophys Res 85:5257–5280

    Article  Google Scholar 

  • Tarduno JA (2007) On the motion of Hawaii and other mantle plumes. Chem Geol 241:234–247

    Article  Google Scholar 

  • Theyer F, Vincent E, Mayer LA (1989) Sedimentation and paleoceanography of the central equatorial Pacific. In: Winterer EL, Hussong DM, Decker RW (eds) The Eastern Pacific Ocean and Hawaii. Geological Society of America, Boulder, CO, pp 347–372

    Google Scholar 

  • Thiede J (1981) Reworking in upper Mesozoic and Cenozoic central Pacific deep sea sediments. Nature 289:667–670

    Article  Google Scholar 

  • Thomas E, Turekian KK, Wei KY (2000) Productivity control of fine particle transport to equatorial Pacific sediment. Global Biogeochem Cycles 14:945–955. doi:910.1029/1998GB001102

    Article  Google Scholar 

  • Tominaga M, Lyle M, Mitchell NC (2011) Seismic interpretation of pelagic sedimentation regimes in the 18–53 Ma eastern equatorial Pacific: Basin?scale sedimentation and infilling of abyssal valleys. Geochem Geophys Geosyst 12:Paper Q03004. doi:10.1029/2010GC003347

  • van Andel TJ, Heath GR, Moore TC (1975) Cenozoic tectonics, sedimentation, and paleoceanography of the central equatorial Pacific. Geol Soc Am Mem 143:134

    Google Scholar 

  • van de Flierdt T, Frank M, Halliday AN, Hein JR, Hattendorf B, Günther D, Kubik PW (2004) Deep and bottom water export from the Southern Ocean to the Pacific over the past 30 million years. Paleoceanography 19:paper PA1020. doi:10.1029/2003PA000923

  • Wessel P, Kroenke LW (2007) Reconciling late Neogene Pacific absolute and relative plate motion changes. Geochem Geophys Geosyst 8. doi:10.1029/2007GC001636

  • Wessel P, Kroenke LW (2008) Pacific absolute plate motion since 145 Ma: an assessment of the fixed hot spot hypothesis. J Geophys Res 113:Paper B06101. doi:10.1029/2007JB005499

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72:441

    Article  Google Scholar 

  • Wessel P, Harada Y, Kroenke LW (2006) Toward a self-consistent, high-resolution absolute plate motion model for the Pacific. Geochem Geophys Geosyst 7. doi:10.1029/2005GC001000

  • Winterer EL (1973) Sedimentary facies and plate tectonics of the equatorial Pacific. Am Assoc Petrol Geol Bull 57:265–282

    Google Scholar 

  • Wyrtki K, Kilonsky B (1984) Mean water and ocean structure during the Hawaii-to-Tahiti Shuttle experiment. J Phys Ocean 14:242–254

    Article  Google Scholar 

Download references

Acknowledgments

We thank the captain and crew of the RV Revelle for their work during the AMAT03 cruise, including chief scientist Mitch Lyle and the other shipboard scientists. Figures were created with the GMT software system (Wessel and Smith 1991). We thank reviews from three anonymous reviewers, which provoked significant improvements of this article. This research was supported by NERC Grants NE/C508985/2, NE/I017895/1 and NE/J005282/1, and by the University of Manchester. Data acquisition was also supported by NSF Grant OCE-9634141 to Lyle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, N.C., Dubois, N. Evaluating Cenozoic equatorial sediment deposition anomalies for potential paleoceanographic and Pacific plate motion applications. Mar Geophys Res 35, 1–20 (2014). https://doi.org/10.1007/s11001-013-9196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-013-9196-2

Keywords

Navigation