Skip to main content
Log in

Bathymetry enhancement by altimetry-derived gravity anomalies in the East Sea (Sea of Japan)

  • Original Research Paper
  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The gravity-geologic method (GGM) was used to enhance the bathymetry of the East Sea (Sea of Japan) with satellite altimetry-derived free-air gravity anomalies and shipborne depth measurements. By comparison with the bathymetry model of Smith and Sandwell’s (SAS) approach (1994), GGM was found to have an advantage with short wavelength (≤12 km) components, while SAS better predicts longer wavelength (≥25 km) components, despite its dependency on density contrast. To mitigate this limitation, a tuning density contrast of 10.25 g/cm3 between seawater and the seafloor was primarily estimated by the downward continuation method and then validated by the check points method with GGM. Similarly, SAS is limited by the “A” value in low-pass part of the Wiener filter, which defines the effective range of the wavelength components on bathymetry. As a final result, we present an enhanced GGM bathymetry model by integrating all available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams JM, Hinze WJ (1990) The gravity-geologic technique for mapping varied bedrock topography. In: Ward SH (ed) Geotechnical and environmental geophysics. Environmental and groundwater, vol III. Society of Exploration Geophysicists, Tulsa, OK, pp 99–106

    Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDID NGDC-24

  • Baudry N, Calmant S (1991) 3-D modelling of seamount topography from satellite altimetry. Geophys Res Lett 18(6):1143–1146

    Article  Google Scholar 

  • Baudry N, Diament M, Albouy Y (1987) Precise location of unsurveyed seamounts in the Austral archipelago area using SEASAT data. Geophys J R Astron Soc 89:869–888

    Google Scholar 

  • Born GH, Dunne JA, Lamb DB (1979) Reports: Seasat mission overview. Science 204:1405–1406

    Article  Google Scholar 

  • Calmant S (1994) Seamount topography by least-squares inversion of altimetric geoid heights and shipborne profiles of bathymetry and/or gravity anomalies. Geophys J Int 119:428–452

    Article  Google Scholar 

  • Calmant S, Baudry N (1996) Modeling bathymetry by inverting satellite altimetry data: a review. Mar Geophy Res 18:123–134

    Article  Google Scholar 

  • Calmant S, Berge-Nguyen M, Cazenave A (2002) Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings. Geophys J Int 151:795–808

    Article  Google Scholar 

  • Cheney R, Douglas B, Green R, Miller L, Milbert D, Porter D (1986) The GEOSAT altimeter mission: a milestone in satellite oceanography. EOS Trans Am Geophys Un 67(48):1354–1355

    Google Scholar 

  • Craig CH, Sandwell DT (1988) Global distribution of seamounts from Seasat profiles. J Geophys Res 93(B9):10408–10420

    Article  Google Scholar 

  • Dixon TH, Naraghi M, McNutt MK, Smith SM (1983) Bathymetric prediction from SEASAT altimeter data. J Geophys Res 88(C3):1563–1571

    Article  Google Scholar 

  • Francis CR, Graf G, Edwards PG, McCaig M, McCarthy C, Lefebvre A, Pieper B, Pouvreau PY, Wall R, Weschler F, Louet J, Schumann W, Zobl R (1995) The ERS-2 spacecraft and its payload. ESA Bull 83:13–31

    Google Scholar 

  • Fu LL, Christensen EJ, Yamarone CA Jr, Lefebvre M, Menard Y, Dorrer M, Escudier P (1994) TOPEX/POSEIDON mission overview. J Geophys Res 99(C12):24369–24381

    Google Scholar 

  • Gottschalk D (1991) ERS-1 mission and system overview. Die Geowissenschaften 9:100–101

    Google Scholar 

  • Hsiao YS, Kim JW, Kim KB, Lee BY, Hwang C (2010) Bathymetry estimation by gravity-geologic method: investigation of density contrast predicted by downward continuation. Terr Atmos Ocean Sci (accepted for publication)

  • Hwang C (1999) A bathymetric model for the South China Sea from satellite altimetry and depth data. Mar Geod 22:37–51

    Article  Google Scholar 

  • Ibrahim A, Hinze WJ (1972) Mapping buried bedrock topography with gravity. Ground Water 10(3):18–23

    Article  Google Scholar 

  • Jin YK (1995) Crustal structure of the South Shetland trench and the Shackleton fracture zone off the northern Antarctic Peninsula. Ph.D. dissertation, Seoul National University

  • Jung WY, Vogt ER (1992) Predicting bathymetry from Geosat-ERM and shipborne profiles in the South Atlantic Ocean. Tectonophysics 210:235–253

    Article  Google Scholar 

  • Kim JW, von Frese RRB, Lee BY, Roman DR, Doh SJ (2010) Altimetry-derived gravity predictions of bathymetry by gravity-geologic method. Pure Appl Geophys. doi:10.1007/s00024-010-0170-5 (accepted for publication)

  • Nagarajan R (1994) Gravity-geologic investigation of buried bedrock topography in northwestern Ohio. M.Sc. thesis, Department of Geological Sciences, Ohio State University

  • National Geophysical Data Center (2008) http://www.ngdc.noaa.gov/mgg/gdas/ims/trk_cri.html. US Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado, USA

  • Parker RL (1972) The rapid calculation of potential anomalies. Geophys JR Astron Soc 31:447–455

    Google Scholar 

  • Parker RL (1977) Understanding Inverse Theory. Ann Rev Earth Planet Sci 5:35–64

    Article  Google Scholar 

  • Ramillien G, Cazenave A (1997) Global bathymetry derived from altimeter data of the ERS-1 geodetic mission. J Geodyn 23(2):129–149

    Article  Google Scholar 

  • Roman DR (1999) An integrated geophysical investigation of Greenland’s tectonic history. Ph.D. dissertation, Department of Geological Sciences, Ohio State University

  • Sandwell DT, Smith WHF (2001) Bathymetric estimation. In: Fu LL, Cazenave A (eds) Satellite altimetry and earth sciences. A handbook of techniques and applications. Academic press, San Diego, pp 441–457

    Chapter  Google Scholar 

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. J Geophys Res 114(B01411). doi:10.1029/2008JB006008

  • Sichoix L, Bonneville A (1996) Prediction of bathymetry in French Polynesia constrained by shipboard data. Geophys Res Lett 23(18):2469–2472

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1994) Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J Geophys Res 99(B11):21803–21824. doi:10.1029/94JB00988

    Article  Google Scholar 

  • Strykowski G, Boschetti F, Papp G (2005) Estimation of the mass density contrast and the 3D geometrical shape of the source bodies in the Yilgarn area, Eastern Goldfields, Western Australia. J Geodyn 39(5):444–460

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed problems. Winston-Wiley, New York

    Google Scholar 

  • Vogt ER, Jung WY (1991) Satellite radar altimetry aids seafloor mapping. EOS Trans Am Geophys Un 72(465):468–469

    Google Scholar 

  • Watts AB, Sandwell DT, Smith WHF, Wessel P (2006) Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. J Geophys Res 111:B08408. doi:10.1029/2005JB004083

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of the Generic Mapping Tools released. EOS Trans Am Geophys Un 79(579). doi:10.1029/98EO00426

Download references

Acknowledgments

This study was supported by the COMPAC Project (PE10030) and the Korea Arctic Multidisciplinary Program (KAMP, PP10090) of the Korea Polar Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.B., Hsiao, YS., Kim, J.W. et al. Bathymetry enhancement by altimetry-derived gravity anomalies in the East Sea (Sea of Japan). Mar Geophys Res 31, 285–298 (2010). https://doi.org/10.1007/s11001-010-9110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-010-9110-0

Keywords

Navigation